【題目】如圖,ABCD的頂點(diǎn)A、B的坐標(biāo)分別是A(﹣1,0),B(0,﹣2),頂點(diǎn)C、D在雙曲線y= 上,邊AD交y軸于點(diǎn)E,且四邊形BCDE的面積是△ABE面積的5倍,則k= .
【答案】12
【解析】解:如圖,過C、D兩點(diǎn)作x軸的垂線,垂足為F、G,DG交BC于M點(diǎn),過C點(diǎn)作CH⊥DG,垂足為H,
∵ABCD是平行四邊形,
∴∠ABC=∠ADC,
∵BO∥DG,
∴∠OBC=∠GDE,
∴∠HDC=∠ABO,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,設(shè)C(m+1,n),D(m,n+2),
則(m+1)n=m(n+2)=k,
解得n=2m,則D的坐標(biāo)是(m,2m+2),
設(shè)直線AD解析式為y=ax+b,將A、D兩點(diǎn)坐標(biāo)代入得
,
由①得:a=b,代入②得:mb+b=2m+2,
即b(m+1)=2(m+1),解得b=2,
則 ,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE= ×BE×AO=2,
∵S四邊形BCDE=5S△ABE=5× ×4×1=10,
∵S四邊形BCDE=S△ABE+S四邊形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
所以答案是:12.
【考點(diǎn)精析】掌握確定一次函數(shù)的表達(dá)式和比例系數(shù)k的幾何意義是解答本題的根本,需要知道確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某小區(qū)某月家庭用水量的情況,從該小區(qū)隨機(jī)抽取部分家庭進(jìn)行調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分
分組 | 家庭用水量x/噸 | 家庭數(shù)/戶 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>14.0 | 3 |
根據(jù)以上信息,解答下列問題
(1)家庭用水量在4.0<x≤6.5范圍內(nèi)的家庭有戶,在6.5<x≤9.0范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(2)本次調(diào)查的家庭數(shù)為戶,家庭用水量在9.0<x≤11.5范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(3)家庭用水量的中位數(shù)落在組;
(4)若該小區(qū)共有200戶家庭,請估計(jì)該月用水量不超過9.0噸的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同.
(1)從箱子中隨機(jī)摸出一個(gè)球是白球的概率是多少?
(2)從箱子中隨機(jī)摸出一個(gè)球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出的球都是白球的概率,并畫出樹狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O(shè)為圓心的圓與直線y=﹣x+ 交于A、B兩點(diǎn),若△OAB恰為等邊三角形,則弧AB的長度為( )
A. π
B.π
C. π
D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是( )
A.45°
B.85°
C.90°
D.95°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列證明:
已知:AB//CD,連AD交BC于點(diǎn)F,∠1=∠2,求證:∠B+∠CDE=180°
證明:∵∠1= ( )
又∵∠1=∠2
∴∠BFD=∠2( )
∴BC// ( )
∴∠C+ =180°( )
又∵AB//CD
∴∠B=∠C( )
∴∠B+∠CDE=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l分別交AB,CD于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),若∠1=∠2
(1)求證:AB//CD;
(2)如圖,點(diǎn)E、F在AB,CD之間,且在MN的左側(cè),若∠MEF+∠EFN=255°,求∠AME+∠FNC的度數(shù);
(3)如圖,點(diǎn)H在直線AB上,且位于點(diǎn)M的左側(cè);點(diǎn)K在直線MN上,且在直線AB的上方.點(diǎn)Q在∠MND的角平分線NP上,且∠KHM=2∠MHQ,若∠HQN+∠HKN=75°,直接寫出∠PND和∠QHB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說明理由;
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E在對角線BD上,且∠DAE=67.5°,EF⊥AB,垂足為F,則EF的長為( )
A. 1B. C. 4-2D. 3-4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com