【題目】如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2,則該半圓的半徑為()

A. cm B. 9 cm

C. cm D. cm

【答案】C

【解析】

連接OA、OB、OE,

∵四邊形ABCD是正方形,

∴AD=BC,∠ADO=∠BCO=90°,

∵在Rt△ADORt△BCO,

∴Rt△ADO≌Rt△BCO,

∴OD=OC,

∵四邊形ABCD是正方形,

∴AD=DC,

設(shè)AD=acm,則OD=OC=DC=AD=acm,

在△AOD中,由勾股定理得:OA=OB=OE=acm,

∵小正方形EFCG的面積為16cm2,

∴EF=FC=4cm,

在△OFE中,由勾股定理得:(a)2=42+(a+4)2,

解得:a=-4(舍去),a=8,

a =4(cm),

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示

1)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△ABC;(其中A、B、C分別是A、BC的對(duì)應(yīng)點(diǎn),不寫(xiě)畫(huà)法)

2)直接寫(xiě)出ABC三點(diǎn)的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測(cè)得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測(cè)得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l1x軸于點(diǎn)A6,0),交y軸于B0,6).

1)如圖,折疊△AOB,使BA落在y軸上,折痕所在直線為l2,直線l2x軸交與C點(diǎn),求C點(diǎn)坐標(biāo)及l2的解析式;

2)在直線l1上找點(diǎn)M,使得以M、A、C為頂點(diǎn)的三角形是等腰三角形,求出所有滿足條件的M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足.

1)若沒(méi)有平方根,判斷點(diǎn)A在第幾象限并說(shuō)明理由;

2)若點(diǎn)A軸的距離是點(diǎn)B軸距離的3倍,求點(diǎn)B的坐標(biāo);

3)點(diǎn)D的坐標(biāo)為(4,-2),OAB的面積是DAB面積的2倍,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測(cè)得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測(cè)得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文化用品商店用2400元購(gòu)進(jìn)一批學(xué)生書(shū)包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購(gòu)進(jìn)第二批同樣的書(shū)包,所購(gòu)數(shù)見(jiàn)是第一批購(gòu)進(jìn)數(shù)量的3倍,但單價(jià)貴了5元,結(jié)果購(gòu)進(jìn)第二批書(shū)包用了7800.

(1)求第一批購(gòu)進(jìn)書(shū)包的單價(jià)是多少元?

(2)若商店銷(xiāo)售這兩批書(shū)包時(shí),每個(gè)售價(jià)都是100元,全部售出后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=1與雙曲線y=相交于點(diǎn)A1,與雙曲線y=相交于點(diǎn)B1,直線y=2與雙曲線y=相交于點(diǎn)A2,與雙曲線y=相交于點(diǎn)B2,則四邊形A1B1B2A2的面積為_____;直線y=n與雙曲線y=相交于點(diǎn)An,與雙曲線y=相交于點(diǎn)Bn,直線y=n+1與雙曲線y=相交于點(diǎn)An+1,與雙曲線y=相交于點(diǎn)Bn+1,則四邊形AnBnBn+1An+1的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案