【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點(diǎn)O為BD的中點(diǎn),且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
試題(1)過(guò)點(diǎn)O作OE⊥AC于E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得OB=OE,從而求出OE=OD,然后根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上證明;
(2)利用“HL”證明△ABO和△AEO全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根據(jù)垂直的定義即可證明;
(3)根據(jù)全等三角形對(duì)應(yīng)邊相等可得AB=AE,CD=CE,然后證明即可.
試題解析:
(1)過(guò)點(diǎn)O作OE⊥AC于E,
∵∠ABD=90゜,OA平分∠BAC,
∴OB=OE,
∵點(diǎn)O為BD的中點(diǎn),
∴OB=OD,
∴OE=OD,
∴OC平分∠ACD;
(2)在Rt△ABO和Rt△AEO中,
,
∴Rt△ABO≌Rt△AEO(HL),
∴∠AOB=∠AOE,
同理求出∠COD=∠COE,
∴∠AOC=∠AOE+∠COE= ×180°=90°,
∴OA⊥OC;
(3)∵Rt△ABO≌Rt△AEO,
∴AB=AE,
同理可得CD=CE,
∵AC=AE+CE,
∴AB+CD=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長(zhǎng)線于F,若∠F=30°,DE=1,則EF的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問(wèn)添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點(diǎn)D,⊙O經(jīng)過(guò)A、D兩點(diǎn),且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若 , ,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn),(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交與點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.
求證:(1)AD=BE
(2)△APC≌△BQC
(3)△PCQ是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)P(2,3),點(diǎn)D是正比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)D作y軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點(diǎn)A,過(guò)點(diǎn)A作x軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點(diǎn)E.
(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.
(2)當(dāng)點(diǎn)D的縱坐標(biāo)為9時(shí),求:點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象交于A(﹣2,m),B(4,﹣2)兩點(diǎn),與x軸交于C點(diǎn),過(guò)A作AD⊥x軸于D.
(1)求這兩個(gè)函數(shù)的解析式:
(2)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)2﹣(﹣4)+3
(2)﹣32÷(﹣2)3
(3)(﹣+)×12
(4)﹣13+[(﹣4)2﹣(1﹣32)×2]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com