(2013年四川攀枝花4分)如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為 (請將所有正確的序號都填上).
①③④。
【解析】∵△ACE是等邊三角形,∴∠EAC=60°,AE=AC。
∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC。
∵F為AB的中點,∴AB=2AF。∴BC=AF。∴△ABC≌△EFA(SAS)!郌E=AB。
∴∠AEF=∠BAC=30°。∴EF⊥AC。故①正確。
∵EF⊥AC,∠ACB=90°,∴HF∥BC。
∵F是AB的中點,∴HF=BC。
∵BC=AB,AB=BD,∴HF=BD。故④說法正確。
∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°。
∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF。
∵EF⊥AC,∴∠AEF=30°。∴∠BDF=∠AEF!唷鱀BF≌△EFA(AAS)。∴AE=DF。
∵FE=AB,∴四邊形ADFE為平行四邊形。
∵AE≠EF,∴四邊形ADFE不是菱形。故②說法不正確。
∵四邊形ADFE為平行四邊形,∴AG=AF!郃G=AB。
∵AD=AB,∴AD=AG,即AD=4AG。故③說法正確。
綜上所述,正確結(jié)論的為①③④。
考點:等邊三角形的性質(zhì),菱形的判定,含30度角的直角三角形的性質(zhì),平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì)。
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川攀枝花8分)如圖,PA為⊙O的切線,A為切點,直線PO交⊙O與點E,F(xiàn)過點A作PO的垂線AB垂足為D,交⊙O與點B,延長BO與⊙O交與點C,連接AC,BF.
(1)求證:PB與⊙O相切;
(2)試探究線段EF,OD,OP之間的數(shù)量關(guān)系,并加以證明;
(3)若AC=12,tan∠F=,求cos∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:填空題
(2013年四川攀枝花4分)某次數(shù)學(xué)測驗中,某班六位同學(xué)的成績分別是:86,79,81,86,90,84,這組數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:選擇題
(2013年四川攀枝花3分)二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則函數(shù)與y=bx+c在同一直角坐標(biāo)系內(nèi)的大致圖象是【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:選擇題
(2013年四川攀枝花3分)已知實數(shù)x,y,m滿足,且y為負(fù)數(shù),則m的取值范圍是【 】
A.m>6 B.m<6 C.m>﹣6 D.m<﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:選擇題
(2013年四川攀枝花3分)﹣5的相反數(shù)是【 】
A. B. C. D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com