【題目】用適當(dāng)方法解下列方程:

1)(3x+12﹣9=0

2x2+4x﹣1=0

33x2﹣2=4x

4)(y+22=1+2y

【答案】(1)x1=x2=.(2x1=2+x2=2.(3x1=,x2=,(4此方程無解.

【解析】試題分析:(1)可以利用平方差公式進(jìn)行因式分解求解,

(2)先求出a,b,c,再代入計(jì)算判定方程的根的情況,然后利用求根公式求解,

(3)先將方程整理成一般式, 求出a,b,c,再代入計(jì)算判定方程的根的情況,然后利用求根公式求解,

(4) 先將方程整理成一般式, 求出a,b,c,再代入計(jì)算判定方程的根的情況,然后利用求根公式求解.

試題解析:(1)(3x+12﹣9=0,

3x+1+3)(3x+1﹣3=0,

3x+4=0,3x﹣2=0,

所以x1=,x2=,

2x2+4x﹣1=0,

因?yàn)?/span>b2﹣4ac=42﹣4×1×﹣1=20,

所以,

所以,,

33x2﹣2=4x,

3x2﹣4x﹣2=0,

因?yàn)?/span>b2﹣4ac=﹣42﹣4×3×﹣2=40,

所以,

所以,,

4)(y+22=1+2y,

整理得:y2+2y+3=0,

b2﹣4ac=22﹣4×1×3=﹣80,

∴此方程無解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)M、N同時(shí)從原點(diǎn)出發(fā)沿?cái)?shù)軸做勻速運(yùn)動(dòng),己知?jiǎng)狱c(diǎn)M、N的運(yùn)動(dòng)速度比是1:2(速度單位:1個(gè)單位長度/秒),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若動(dòng)點(diǎn)M向數(shù)軸負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)N向數(shù)軸正方向運(yùn)動(dòng),當(dāng)t=2秒時(shí),動(dòng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn),動(dòng)點(diǎn)N運(yùn)動(dòng)到B點(diǎn),且AB=12(單位長度).

①在直線l上畫出A、B兩點(diǎn)的位置,并回答:點(diǎn)A運(yùn)動(dòng)的速度是   (單位長度/秒);點(diǎn)B運(yùn)動(dòng)的速度是   (單位長度/秒).

②若點(diǎn)P為數(shù)軸上一點(diǎn),且PA﹣PB=OP,求的值;

(2)由(1)中A、B兩點(diǎn)的位置開始,若M、N同時(shí)再次開始按原速運(yùn)動(dòng),且在數(shù)軸上的運(yùn)動(dòng)方向不限,再經(jīng)過幾秒,MN=4(單位長度)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l的解析式為y=x+b,它與坐標(biāo)軸分別交于AB兩點(diǎn),其中B坐標(biāo)為(0,4).

1)求出A點(diǎn)的坐標(biāo);

2)若點(diǎn) Py軸上,且到直線l的距離為3,試求點(diǎn)P的坐標(biāo);

3)在第一象限的角平分線上是否存在點(diǎn)Q使得∠QBA=90°?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

4)動(dòng)點(diǎn)Cy軸上的點(diǎn)(0,10)出發(fā),以每秒1cm的速度向y軸負(fù)半軸方向運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)中所有可能的時(shí)間t值,使得ABC為軸對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作三角形的類型:

規(guī)

類型

依據(jù)

已知兩邊及其夾角作三角形

__________

已知兩角一邊作三角形

__________(或

已知三邊作三角形

__________

【答案】 SAS ASA SSS

【解析】試題解析:已知兩邊及其夾角作三角形,其依據(jù)是:SAS.

已知兩角一邊作三角形,其依據(jù)是:ASA(或.

已知三邊作三角形, 其依據(jù)是:

故答案為:

點(diǎn)睛:判定三角形全等的方法有:

型】填空
結(jié)束】
11

【題目】如圖,根據(jù)圖中作圖痕跡,可以得出作三角形的依據(jù)分別是:

1)__________;

(2)___________

(3)__________.(圖中虛線表示最后作出的線段)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年某市有23 000名初中畢業(yè)生參加了升學(xué)考試,為了解23 000名考生的升學(xué)成績,從中抽取了200名考生的試卷進(jìn)行統(tǒng)計(jì)分析,以下說法正確的是(

A.23 000名考生是總體B.每名考生的成績是個(gè)體

C.200名考生是總體的一個(gè)樣本D.以上說法都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線的圖象交x軸于A20)和點(diǎn)B,交y軸負(fù)半軸于點(diǎn)C,且OB=OC,下列結(jié)論:

2bc=2;a=ac=b1;0

其中正確的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BFO的直徑,AO上(異于B、F)一點(diǎn),O的切線MAFB的延長線交于點(diǎn)M;PAM上一點(diǎn),PB的延長線交O于點(diǎn)C,DBC上一點(diǎn)且PA=PDAD的延長線交O于點(diǎn)E

1)求證: ;

2)若ED、EA的長是一元二次方程的兩根,求BE的長;

3)若MA=,sinAMF=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠D=∠C=90°,EDC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是( )

A. 62° B. 31° C. 28° D. 25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(2,y1)B(1,y2)在直線ykx+b上,且直線經(jīng)過第一、二、四象限,則y1_____y2.(用連接)

查看答案和解析>>

同步練習(xí)冊(cè)答案