【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點A(m,2),將直線y=2x向下平移4個單位后與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點P,則k=;△POA的面積為

【答案】2;2
【解析】解:∵y=2x與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點A(m,2),

∴2=2x,得x=1,

∴m=1,

∴2= ,得k=2,

直線y=2x向下平移4個單位后的函數(shù)解析式為y=2x﹣4,

,得 (舍去),

∴點P的坐標(biāo)為( , ),

設(shè)OP對應(yīng)的函數(shù)解析式為y=ax,

,

得a=6﹣4

∴OP對應(yīng)的函數(shù)解析式為y=(6﹣4 )x,

當(dāng)x=1時,y=(6﹣4 )×1=6﹣4

∴△POA的面積是: =2,

所以答案是:2,2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關(guān)于該班50名同學(xué)一周鍛煉時間的說法錯誤的是( 。

A. 中位數(shù)是6.5 B. 平均數(shù)高于眾數(shù)

C. 極差為3 D. 平均每周鍛煉超過6小時的人占總數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDEM是∠AMF的平分線,NF是∠CNE的平分線,EN,MF交于點O.

1)若∠AMF=50°,∠CNE=40°,∠E= °,∠F= °,∠MON= °;

2)指出∠E,∠F與∠MON之間存在的等量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不能夠鋪滿地面的組合圖形是(

A. 正八邊形和正方形 B. 正方形和正三角形

C. 正六邊形和正方形 D. 正六邊形和正三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,A、B兩點之間的距離是90米,甲、乙兩機器人分別從AB兩點同時同向出發(fā)到終點C,乙機器人始終以50米分的速度行走,乙行走9分鐘到達C點.設(shè)兩機器人出發(fā)時間為t(分鐘),當(dāng)t3分鐘時,甲追上乙.

請解答下面問題:

1BC兩點之間的距離是   米.

2)求甲機器人前3分鐘的速度為多少米/分?

3)若前4分鐘甲機器人的速度保持不變,在4≤t≤6分鐘時,甲的速度變?yōu)榕c乙相同,求兩機器人前6分鐘內(nèi)出發(fā)多長時間相距28米?

4)若6分鐘后甲機器人的速度又恢復(fù)為原來出發(fā)時的速度,直接寫出當(dāng)t6時,甲、乙兩機器人之間的距離S.(用含t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E.若CD=5,CE=4,則⊙O的半徑是( )

A.3
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+ 在x=0和x=2時的函數(shù)值相等.

(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點A(﹣3,m),求m和k的值;
(3)把二次函數(shù)的圖象與x軸兩個交點之間的部分記為圖象G,把圖象G向左平移n(n>0)個單位后得到的圖象記為M,請結(jié)合圖象回答:當(dāng)(2)中得到的直線與圖象M有公共點時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:

(1)請?zhí)顚懴卤?

平均數(shù)

方差

中位數(shù)

命中9環(huán)及以上的次數(shù)

7

1.2

1

5.4

(2)請從下列四個不同的角度對這次測試結(jié)果進行分析:

從平均數(shù)和方差相結(jié)合看;

從平均數(shù)和中位數(shù)相結(jié)合看(分析誰的成績好些);

從平均數(shù)和命中9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);

從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,點D為BC邊上一動點(不與點B,C重合),∠DAE=60°,過點B作BE∥AC交AE于點E.

(1)求證:△ADE是等邊三角形;

(2)當(dāng)點D在何處時,AE⊥BE?指出點D的位置,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案