已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中陰影部分的面積為  (   ).

(A)9          (B)3           (C)           (D)

 

【答案】

D

【解析】本題主要考查運(yùn)用勾股定理求出等腰直角三角形三條斜邊之間的關(guān)系. 根據(jù)等腰直角三角形三條斜邊之間的關(guān)系,求出三個(gè)三角形面積之間的關(guān)系,進(jìn)而求出總面積,陰影部分的面積=各個(gè)陰影部分的面積之和.

解:設(shè)以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形的底邊上的高分別為h1,h2,h3

則h1=AC,h2=BC,h3=AB,

即:陰影部分的面積為:××AC×AC+ ××BC×BC+××AB×AB=(AC2+AB2+BC2),

在Rt△ABC中,由勾股定理可得:AC2+BC2=AB2,AB=3,

所以陰影部分的面積為:×2AB2=×32=

故選D

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形,若斜邊AB=5,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB=6,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,以Rt△ABC的斜邊AB為直徑作⊙O,D是⊙O上的點(diǎn),且有AC=CD.過(guò)點(diǎn)C作⊙O的切線,與BD的延長(zhǎng)線交于點(diǎn)E,連接CD.
(1)試判斷BE與CE是否互相垂直,請(qǐng)說(shuō)明理由;
(2)若CD=2
5
,tan∠DCE=
1
2
,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點(diǎn),且有弧AC=弧CD,連CD、BD,在BD延長(zhǎng)線上取一點(diǎn)E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長(zhǎng)度的比為
1
2
,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交AB于D點(diǎn),OE∥AB交BC于E點(diǎn),求證:DE為⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案