【題目】如圖,在ABC中,C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點(diǎn),且AP=BQ=a (其中0<a<8).

(1)若PQBC,求a的值;

(2)若PQ=BQ,把線段CQ繞著點(diǎn)Q旋轉(zhuǎn)180°,試判別點(diǎn)C的對(duì)應(yīng)點(diǎn)C’是否落在線段QB上?請(qǐng)說明理由.

【答案】(1)(2)點(diǎn)C′不落在線段QB上

【解析】試題分析: 1∵∠B=B,∠PQB=C=90°∴△BQP∽△BCA,

,,解得:a=,

(2) QHABH,PQ=BQ,∴BH=HP,∵∠B=B,∠BHQ=C,∴△BQH∽△BAC,

BH:BC=BQ:AB可得: 10a:a=8:10,解得a=,CQ=8a=,

BQQC,∴點(diǎn)C不落在線段QB.

試題解析:1∵∠B=B,∠PQB=C=90°

∴△BQP∽△BCA,

,,

解得:a=,

2)點(diǎn)C不落在線段QB,

QHABH,

PQ=BQ,

BH=HP,

∵∠B=B,∠BHQ=C,

∴△BQH∽△BAC,

BH:BC=BQ:AB可得: 10a:a=8:10,

解得a=,

CQ=8a=,

BQQC,

∴點(diǎn)C不落在線段QB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)PAB的延長(zhǎng)線上,且∠CAB=2∠BCP.

(1)求證:直線CP是⊙O的切線;

(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著阿里巴巴、淘寶網(wǎng)、京東、小米等互聯(lián)網(wǎng)巨頭的崛起,催生了快遞行業(yè)的高速發(fā)展.據(jù)調(diào)查,杭州市某家小型快遞公司,今年一月份與三月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.

1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率;

2)如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年4月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察數(shù)表

根據(jù)其中的規(guī)律,在數(shù)表中的方框內(nèi)由上到下的數(shù)分別是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   

2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;

3)若保持三角尺BCE(其中∠B45°)不動(dòng),三角尺ACDCD邊與CB邊重合,然后將三角尺ACD(其中∠D30°)繞點(diǎn)C按逆時(shí)針方向任意轉(zhuǎn)動(dòng)一個(gè)角度∠BCD

設(shè)∠BCDαα90°

①∠ACB能否是∠DCE4倍?若能求出α的值;若不能說明理由.

②當(dāng)這兩塊三角尺各有一條邊互相垂直時(shí)直接寫出α的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由幾個(gè)相同的邊長(zhǎng)為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).

(1)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.

(2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)

(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊為邊在BC同側(cè)分別作等邊三角形,即△ABD,△BCE,△ACF

(1)四邊形ADEF__________四邊形;

(2)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為矩形;

(3)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為菱形;

(4)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;

(3)坐標(biāo)原點(diǎn)為O,求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案