已知△ABC中,∠C=90°,AC=5,BC=12,以C點(diǎn)為圓心,
60
13
為半徑的⊙C與直線AB的位置關(guān)系是( 。
A、相交B、相切C、相離D、內(nèi)含
考點(diǎn):直線與圓的位置關(guān)系
專題:
分析:欲求圓與AB的位置關(guān)系,關(guān)鍵是求出點(diǎn)C到AB的距離d,再與半徑r進(jìn)行比較.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:作CD⊥AB于D.
由勾股定理AB=
AC2+AB2
=13,
由面積公式得AC•BC=AB•CD,
∴CD=
60
13

∴圓與AB的位置關(guān)系是相切,
故選B.
點(diǎn)評:本題考查的是直線與圓的位置關(guān)系,解決此類問題可通過比較圓心到直線距離d與圓半徑大小關(guān)系完成判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)考試中,全班50名同學(xué),平均分為78.7,其中女生有20名,她們的平均分為80.5,則這個班男同學(xué)的平均數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知AC⊥BC,點(diǎn)E在AB上,AE=AC,DE⊥AB,則下列結(jié)論不成立的是( 。
A、AD平分∠BAC
B、∠BAC=∠BDE
C、DC=DE
D、∠ADE=∠BDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
22006
22005-22007
的結(jié)果是( 。
A、
1
2
B、-
1
2
C、
2
3
D、-
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)據(jù):2、3、7、4、-1的極差是( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形OABC為正方形,邊長為3,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D在OA上,且D點(diǎn)的坐標(biāo)為(1,0),P是OB上的一個動點(diǎn),則PD+PA和的最小值是( 。
A、2
10
B、
10
C、4
D、9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A,B,C,D在⊙O上,點(diǎn)O在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=( 。┒龋
A、45B、60C、90D、75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

通分
(1)
1
a2b
,-
2
ab2
;         
(2)
1
2x3y
,
4
3xz2
5
4xz
;       
(3)
2x
x-y
,
3y
x+y
(4)
1
x2-y2
,
1
x2+xy
;     
(5)
1
x2+x
,
-1
x2+2x+1
     
(6)
x+1
x
,
x
2x+6
x-1
x2-9
(7)
2mn
4m2-9
,
2m-3
2m+3
;       
(8)
a-1
a2+2a+1
,
6
a2-1
;      
(9)
c
a-b
,
1
(b-a)2
(10)a-3,
2
a+3
;       
(11)
b
a(b+1)
,
a
b(b+1)
;    
(12)
1
x2-4
-x
x2-x-6
,
x+3
x2+5x+6
(13)
2a
2a+1
,
4(2a-1)
4a2-4a+1
; 
(14)
a-1
(a+1)2-4
,
1-a
2-4a+2a2
(15)
1
2a-b
,
1
2a+b
2ab
4a2-b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l與直線y=2x-1的交點(diǎn)的縱坐標(biāo)為5,與直線y=-x-2的交點(diǎn)的縱坐標(biāo)為2,求直線l的解析式.

查看答案和解析>>

同步練習(xí)冊答案