如圖,設拋物線y=ax2+bx+c與x軸交于兩個不同的點A(-1,0),B(m,0),與y軸交于點C(0,-2),且∠ACB=90度.
(1)求m的值和拋物線的解析式;
(2)已知點D(1,n)在拋物線上,過點A的直線y=x+1交拋物線于另一點E,求點D和點E的坐標;
(3)在x軸上是否存在點P,使以點P,B,D為頂點的三角形與三角形AEB相似?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)∠ACB=90°,那么可在直角三角形ACB中,用射影定理求出OB的長,即可得出m的值和B點的坐標.然后將A、B、C三點坐標代入拋物線中即可求出這個二次函數(shù)的解析式.
(2)將點D代入拋物線中,即可求得點D的坐標.然后聯(lián)立拋物線和直線y=x+1的函數(shù)關(guān)系式可求出E點的坐標.
(3)可根據(jù)A和E的坐標求出AE的長,同理可求出AB的長,不難得出∠EAB=∠OBD=45°,那么要想使兩三角形相似,無非有兩種情況:,可根據(jù)AE、AB、BD的長求出PB的長,進而可求出OP的長,也就得出了P點的坐標.
解答:解:(1)在直角△ABC中,
∵CO⊥AB
∴OC2=OA.OB
∴22=1×m即m=4
∴B(4,0).
把A(-1,0)B(4,0)分別代入y=ax2+bx-2,
并解方程組得a=,b=-
∴y=x2-x-2;

(2)把D(1,n)代入y=x2-x-2得n=-3,
∴D(1,-3)
解方程組
,
∴E(6,7).

(3)作EH⊥x軸于點H,則EH=AH=7,
∴∠EAB=45°
由勾股定理得:BE=,AE=7,
作DM⊥x軸于點M,則DM=BM=3,
∴∠DBM=45°由勾股定理得BD=3
假設在x軸上存在點P滿足條件,
∵∠EAB=∠DBP=45°,

,
∴PB=或PB=,OP=4-=或OP=4-=-
∴在x軸上存在點P1,0),P2(-,0)滿足條件.
點評:本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點、相似三角形的判定和性質(zhì)等知識點,要注意(3)中要根據(jù)相似三角形對應邊的不同來分類求解,不要漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,設拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點為A,B,點A的坐標是(2,4),點B的橫坐標是-2.
(1)求a的值及點B的坐標;
(2)點D在線段AB上,過D作x軸的垂線,垂足為點H,在DH的右側(cè)作正三角形DHG.記精英家教網(wǎng)過C2頂點M的直線為l,且l與x軸交于點N.
①若l過△DHG的頂點G,點D的坐標為(1,2),求點N的橫坐標;
②若l與△DHG的邊DG相交,求點N的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,設拋物線y=ax2+bx+c與x軸交于兩個不同的點A(-1,0),B(m精英家教網(wǎng),0),與y軸交于點C(0,-2),且∠ACB=90度.
(1)求m的值和拋物線的解析式;
(2)已知點D(1,n)在拋物線上,過點A的直線y=x+1交拋物線于另一點E,求點D和點E的坐標;
(3)在x軸上是否存在點P,使以點P,B,D為頂點的三角形與三角形AEB相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過點A(1,0),B(3,0),E(0,6)三點的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設拋物線的頂點為C,對稱軸交x軸于點D,在y軸正半軸上有一點P,且以A、O、P為頂點的三角形與△ACD相似,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(27):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,設拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點為A,B,點A的坐標是(2,4),點B的橫坐標是-2.
(1)求a的值及點B的坐標;
(2)點D在線段AB上,過D作x軸的垂線,垂足為點H,在DH的右側(cè)作正三角形DHG.記過C2頂點M的直線為l,且l與x軸交于點N.
①若l過△DHG的頂點G,點D的坐標為(1,2),求點N的橫坐標;
②若l與△DHG的邊DG相交,求點N的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省棗莊市舜耕中學中考數(shù)學二模試卷(解析版) 題型:解答題

如圖,設拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點為A,B,點A的坐標是(2,4),點B的橫坐標是-2.
(1)求a的值及點B的坐標;
(2)點D在線段AB上,過D作x軸的垂線,垂足為點H,在DH的右側(cè)作正三角形DHG.記過C2頂點M的直線為l,且l與x軸交于點N.
①若l過△DHG的頂點G,點D的坐標為(1,2),求點N的橫坐標;
②若l與△DHG的邊DG相交,求點N的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案