A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{\sqrt{10}}{10}$ |
分析 由矩形的性質(zhì)得出AD=BC,AB=CD,∠A=∠B=∠C=90°,證出∠ADF=∠BFE,由AAS證明△ADF≌△BFE,得出對應(yīng)邊相等AF=BE,BF=AD,設(shè)BE=CE=x,則AF=x,BF=AD=BC=2x,CD=AB=3x,由勾股定理求出DE,即可得出結(jié)果.
解答 解:∵四邊形ABCD是矩形,
∴AD=BC,AB=CD,∠A=∠B=∠C=90°,
∴∠ADF+∠AFD=90°,
∵∠DFE=90°,
∴∠AFD+∠BFE=90°,
∴∠ADF=∠BFE,
在△ADF和△BFE中,$\left\{\begin{array}{l}{∠A=∠B}&{\;}\\{∠ADF=∠BFE}&{\;}\\{DF=EF}&{\;}\end{array}\right.$,
∴△ADF≌△BFE(AAS),
∴AF=BE,BF=AD,
∵E是BC的中點(diǎn),
∴BE=CE=$\frac{1}{2}$BC,
設(shè)BE=CE=x,則AF=x,BF=AD=BC=2x,
∴CD=AB=3x,
∴DE=$\sqrt{C{E}^{2}+C{D}^{2}}$=$\sqrt{10}$x,
∴sin∠EDC=$\frac{CE}{DE}$=$\frac{x}{\sqrt{10}x}$=$\frac{\sqrt{10}}{10}$;
故選:D.
點(diǎn)評 本題主要考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、三角函數(shù)等知識;熟練掌握矩形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 有一解 | B. | 有無數(shù)解 | C. | 有一解或無數(shù)解 | D. | 無解 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$a,$\frac{1}{2}$b) | B. | ($\frac{1}{2}$a,b) | C. | (a-2,b) | D. | (a-1,b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y | B. | x-3y=-15 | C. | xy+x-2=0 | D. | $\frac{2}{x}$-y=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com