分析 根據(jù)等腰三角形三線合一的性質(zhì)可得AP=PD,然后根據(jù)等底等高的三角形面積相等求出△BPC的面積等于△ABC面積的一半,代入數(shù)據(jù)計(jì)算即可得解.
解答 解:∵BD=BA,BP是∠ABC的平分線,
∴AP=PD,
∴S△BPD=$\frac{1}{2}$S△ABD,S△CPD=$\frac{1}{2}$S△ACD,
∴S△BPC=S△BPD+S△CPD=$\frac{1}{2}$S△ABD+$\frac{1}{2}$S△ACD=$\frac{1}{2}$S△ABC,
∵△ABC的面積為3,
∴S△BPC=$\frac{1}{2}$×3=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了等腰三角形三線合一的性質(zhì),三角形的面積,利用等底等高的三角形的面積相等求出△BPC的面積與△ABC的面積的關(guān)系是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 整數(shù) | B. | 分?jǐn)?shù) | C. | 有理數(shù) | D. | 無(wú)理數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com