觀(guān)察與思考:
2
2
3
=
2
2
3
3
3
8
=
3
3
8
4
4
15
=
4
4
15

式①驗(yàn)證:2
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2
2
3

式②驗(yàn)證:3
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3
3
8

(1)仿照上述式①、式②的驗(yàn)證過(guò)程,請(qǐng)寫(xiě)出式③的驗(yàn)證過(guò)程;
(2)猜想
5
5
24
=
 

(3)試用含n(n為自然數(shù),且n≥2)的等式表示這一規(guī)律,并加以驗(yàn)證.
分析:觀(guān)察規(guī)律可知n
n
n2-1
=
n+
n
n2-1
,并且互逆.
解答:解:(1)4
4
15
=
43
15
=
(43-4)+4
42-1
=
4(42-1)+4
42-1
=
4
4
15
(3分)

(2)
5
5
24
=5
5
24
(6分)

(3)n
n
n2-1
=
n+
n
n2-1
(11分)
n
n
n2-1
=
n3
n2-1
=
n3-n+n
n2-1
=
n(n2-1)+n
n2-1
=
n+
n
n2-1
(14分)
點(diǎn)評(píng):本題是一道找規(guī)律的題目,要求學(xué)生通過(guò)觀(guān)察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題.解決本題的難點(diǎn)在于找到n
n
n2-1
=
n3
n2-1
=
n3-n+n
n2-1
=
n(n2-1)+n
n2-1
=
n+
n
n2-1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

觀(guān)察與思考:
2
2
3
=
2
2
3
3
3
8
=
3
3
8
4
4
15
=
4
4
15

式①驗(yàn)證:2
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2
2
3

式②驗(yàn)證:3
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3
3
8

(1)仿照上述式①、式②的驗(yàn)證過(guò)程,請(qǐng)寫(xiě)出式③的驗(yàn)證過(guò)程;
(2)猜想
5
5
24
=______
(3)試用含n(n為自然數(shù),且n≥2)的等式表示這一規(guī)律,并加以驗(yàn)證.

查看答案和解析>>

同步練習(xí)冊(cè)答案