△ABC中,∠ACB=90°,AC=BC,CO為中線.現(xiàn)將一直角三角板的直角頂點(diǎn)放在點(diǎn)O上并繞點(diǎn)O旋轉(zhuǎn),若三角板的兩直角邊分別交AC,CB的延長線于點(diǎn)G,H.請從圖中選一組相等的線段并給予證明(除AC=BC,OA=OB=OC外)我選擇證明______=______.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的意義,可判定CG=BH,AG=CH,OG=OH;
(2)根據(jù)等腰直角三角形的性質(zhì)和旋轉(zhuǎn)的意義,可證∠COG=∠BOH,∠GCO=∠OBH;
CD=BD,所以△GCO≌△HBO,即證CG=BH.
解答:(1)結(jié)論:CG=BH,AG=CH,OG=OH.(3分)(每寫對一組給1分)

(2)證明:∵∠ACB=90°,AC=BC,AO=BO,
∴CO=OB,CO⊥AB,∠ABC=45°.(4分)
∵∠COG+∠GOB=90°,∠BOH+∠GOB=90°,
∴∠COG=∠BOH.(5分)
又∵∠ABC=∠OCB=45°,
∴∠OBH=180°-45°=135°,∠GCO=90°+45°=135°,
∴∠GCO=∠OBH.(6分)
(利用等角的補(bǔ)角相等證∠GCO=∠OBH比照給分)
∴△GCO≌△HBO,(7分)
∴CG=BH.(8分)
證其他兩組線段相等比照給分.
點(diǎn)評:本題考查旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是斜邊AB上的一點(diǎn),且CD=AC=3,AB=4,求cosB,sin∠ADC及cos
12
∠DCA
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠ACB=90°,BA的垂直平分線交CB邊于D,若AB=20,AC=10,則圖中等于30°的角的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ACB=90°,AB=2BC,在直線BC或AC上取一點(diǎn)P,使得△PAB等腰三角形,則符合條件的點(diǎn)P共有
6
6
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,⊙O為△ABC的外接圓,AC=6cm,BC=8cm,P為BC的中點(diǎn).動點(diǎn)Q從點(diǎn)P出發(fā),沿射線PC方向以2cm/s的速度運(yùn)動,以P為圓心,PQ長為半徑作圓.設(shè)點(diǎn)Q運(yùn)動的時(shí)間為t s.若⊙P與⊙O相切,則t的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分線,過A、C、D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE.
(1)判斷線段AC與AE是否相等,并說明理由;
(2)求過A、C、D三點(diǎn)的圓的直徑.

查看答案和解析>>

同步練習(xí)冊答案