在平面上任意畫(huà)三條直線,最多可將平面分成________個(gè)部分.

7
分析:在平面上任意畫(huà)三條直線,有四種可能:①三直線平行;②三條直線相交于一點(diǎn);③兩直線平行被第三直線所截;④兩直線相交,又被第三直線所截.故可得出答案.
解答:任意畫(huà)三條直線,相交的情況有四種可能:
1、三直線平行,將平面分成4部分;
2、三條直線相交同一點(diǎn),將平面分成6部分;
3、兩直線平行被第三直線所截,將平面分成6部分;
4、兩直線相交得到一個(gè)交點(diǎn),又被第三直線所截,將平面分成7部分;
故任意三條直線最多把平面分成7個(gè)部分.
點(diǎn)評(píng):本題考查直線的相交情況,要注意分情況討論,要細(xì)心,查找時(shí)要不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道過(guò)兩點(diǎn)有且只有一條直線.
閱讀下面文字,分析其內(nèi)在涵義,然后回答問(wèn)題:
如圖,同一平面中,任意三點(diǎn)不在同一直線上的四個(gè)點(diǎn)A、B、C、D,過(guò)每?jī)蓚(gè)點(diǎn)畫(huà)一條直線,一共可以畫(huà)出多少條直線呢?我們可以這樣來(lái)分析:
過(guò)A點(diǎn)可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線,過(guò)B點(diǎn)也可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.同樣,過(guò)C點(diǎn)、D點(diǎn)也分別可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.這樣,一共得到3×4=12條直線,但其中每條直線都重復(fù)過(guò)一次,如直線AB和直線BA是一條直線,因此,圖中一共有
3×42
=6條直線.請(qǐng)你仿照上面分析方法,回答下面問(wèn)題:
精英家教網(wǎng)
(1)若平面上有五個(gè)點(diǎn)A、B、C、D、E,其中任何三點(diǎn)都不在一條直線上,過(guò)每?jī)牲c(diǎn)畫(huà)一條直線,一共可以畫(huà)出
 
條直線;
若平面上有符合上述條件的六個(gè)點(diǎn),一共可以畫(huà)出
 
條直線;
若平面上有符合上述條件的n個(gè)點(diǎn),一共可以畫(huà)出
 
條直線(用含n的式子表示).
(2)若我校初中24個(gè)班之間進(jìn)行籃球比賽,第一階段采用單循環(huán)比賽(每?jī)蓚(gè)班之間比賽一場(chǎng)),類比上面的分析計(jì)算第一階段比賽的總場(chǎng)次是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū)八年級(jí)數(shù)學(xué)上 題型:044

我們知道:由于圓是中心對(duì)稱圖形,所以過(guò)圓心的任何一條直線都可以將圓分割成面積相等的兩部分(如圖(1))

探索下列問(wèn)題:

(1)在圖(2)給出的四個(gè)正方形中,各畫(huà)出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成角的直線和任意的直線),將每個(gè)正方形都分割成面積相等的兩部分;

(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過(guò)程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2

①請(qǐng)你在圖中相應(yīng)圖形下方的橫線上分別填寫(xiě)S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);

②請(qǐng)你在圖中分別畫(huà)出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫(xiě)S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).

(3)是否存在一條直線將一個(gè)任意的平面圖形(如圖)分割成面積相等的兩部分?請(qǐng)簡(jiǎn)略說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年初中數(shù)學(xué)總復(fù)習(xí)下冊(cè) 題型:044

我們知道:由于圓是中心對(duì)稱圖形,所以過(guò)圓心的任何一條直線都可以將圓分割成面積相等的兩部分.

探索下列問(wèn)題:

(1)在下圖給出的四個(gè)正方形中,各畫(huà)出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個(gè)正方形都分割成面積相等的兩部分;

(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過(guò)程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2

①請(qǐng)你在下圖中相應(yīng)圖形下方的橫線上分別填寫(xiě)S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).

②請(qǐng)你在下圖中分別畫(huà)出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫(xiě)S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).

(3)是否存在一條直線,將一個(gè)任意的平面圖形(如下圖)分割成面積相等的兩部分,請(qǐng)簡(jiǎn)略說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們知道過(guò)兩點(diǎn)有且只有一條直線.
閱讀下面文字,分析其內(nèi)在涵義,然后回答問(wèn)題:
如圖,同一平面中,任意三點(diǎn)不在同一直線上的四個(gè)點(diǎn)A、B、C、D,過(guò)每?jī)蓚(gè)點(diǎn)畫(huà)一條直線,一共可以畫(huà)出多少條直線呢?我們可以這樣來(lái)分析:
過(guò)A點(diǎn)可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線,過(guò)B點(diǎn)也可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.同樣,過(guò)C點(diǎn)、D點(diǎn)也分別可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.這樣,一共得到3×4=12條直線,但其中每條直線都重復(fù)過(guò)一次,如直線AB和直線BA是一條直線,因此,圖中一共有數(shù)學(xué)公式=6條直線.請(qǐng)你仿照上面分析方法,回答下面問(wèn)題:

(1)若平面上有五個(gè)點(diǎn)A、B、C、D、E,其中任何三點(diǎn)都不在一條直線上,過(guò)每?jī)牲c(diǎn)畫(huà)一條直線,一共可以畫(huà)出______條直線;
若平面上有符合上述條件的六個(gè)點(diǎn),一共可以畫(huà)出______條直線;
若平面上有符合上述條件的n個(gè)點(diǎn),一共可以畫(huà)出______條直線(用含n的式子表示).
(2)若我校初中24個(gè)班之間進(jìn)行籃球比賽,第一階段采用單循環(huán)比賽(每?jī)蓚(gè)班之間比賽一場(chǎng)),類比上面的分析計(jì)算第一階段比賽的總場(chǎng)次是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省期末題 題型:解答題

我們知道過(guò)兩點(diǎn)有且只有一條直線.閱讀下面文字,分析其內(nèi)在涵義,然后回答問(wèn)題:如圖,同一平面中,任意三點(diǎn)不在同一直線上的四個(gè)點(diǎn)A、B、C、D,過(guò)每?jī)蓚(gè)點(diǎn)畫(huà)一條直線,一共可以畫(huà)出多少條直線呢?我們可以這樣來(lái)分析:過(guò)A點(diǎn)可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線,過(guò)B點(diǎn)也可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.同樣,過(guò)C點(diǎn)、D點(diǎn)也分別可以畫(huà)出三條通過(guò)其他三點(diǎn)的直線.這樣,一共得到3×4=12條直線,但其中每條直線都重復(fù)過(guò)一次,如直線AB和直線BA是一條直線,因此,圖中一共有=6條直線.請(qǐng)你仿照上面分析方法,回答下面問(wèn)題:

(1)若平面上有五個(gè)點(diǎn)A、B、C、D、E,其中任何三點(diǎn)都不在一條直線上,過(guò)每?jī)牲c(diǎn)畫(huà)一條直線,一共可以畫(huà)出_條直線.           
若平面上有符合上述條件的六個(gè)點(diǎn),一共可以畫(huà)出_條直線;
若平面上有符合上述條件的n個(gè)點(diǎn),一共可以畫(huà)出_條直線(用含n的式子表示).
(2)若我校初中24個(gè)班之間進(jìn)行籃球比賽,第一階段采用單循環(huán)比賽(每?jī)蓚(gè)班之間比賽一場(chǎng)),類比上面的分析計(jì)算第一階段比賽的總場(chǎng)次是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案