如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4.梯形的高DH與中位線EF交于點G,則下列結(jié)論中:
①△DGF≌△EBH;②四邊形EHCF是菱形;③以CD為直徑的圓與AB相切于點E.
正確的有( )

A.1個
B.2個
C.3個
D.0個
【答案】分析:根據(jù)已知利用全等三角形的判定,三角形的中位線定理,菱形的判定等知識對各個結(jié)論進行驗證,從而得到答案.
解答:解:∵直角梯形ABCD中,AD∥BC,AB⊥BC,
∴四邊形ADHB是矩形,
∴CH=BC-BH=2.
∵FG是△DHC的中位線,
∴FG=CH÷2=1=BH,∠DGF=∠DHC=∠B=90°,
∴AB=DH==2
∴BE=,
∴EH==2,
∴△DGF≌△EBH(HL).  (1)成立
∵EF∥HC,EF=HC,
∴四邊形EHCF是平行四邊形,
∵EH=HC=2,
∴四邊形EHCF是菱形(2)成立.
∵EF⊥AE,EF=2,
∴點F到AB的距離等于半徑2,
∴以CD為直徑的圓與AB相切于點E.  (3)成立
故選C.
點評:考查學(xué)生的綜合能力,用到的知識點為:HL證得三角形全等;由已知鄰邊相等的平行四邊形是菱形;圓與直線相切,圓心到切點的距離等于半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當(dāng)∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當(dāng)一個動點到達(dá)終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案