精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠A=60°,BE、CF分別是∠ABC、∠ACB的平分線,BE、CF相交于點D.
(1)求∠FDE的度數;(2)求證:FD=ED.

【答案】分析:(1)根據三角形的內角和定理,得出∠EBC+∠FCB=60°,在△DBC中,即可求出∠BDC=120°,根據對頂角相等即可求出∠FDE的度數,
(2)作輔助線在CB上截取CG=CE,可證出△CED≌△CGD(SAS),即可得出∠EDC=∠GDC,ED=GD,再根據(1)中的條件可證出△BFD≌△BGD,即可得出FD=ED.
解答:(1)解:由三角形內角和定理,在△ABC中,
2∠EBC+2∠FCB+60°=180°,
解得∠EBC+∠FCB=60°,
在△DBC中,∠BDC=180°-(∠EBC+∠FCB)=180°-60°=120°,
∴∠FDE=∠BDC=120°,

(2)證明:在CB上截取CG=CE,由∠ECD=∠GCD,DC=DC,
得:△CED≌△CGD(SAS),
∴∠EDC=∠GDC,ED=GD,
由(1)知∠BDG+∠GDC=120°,
又∵∠BDG+2∠GDC=180°,
解得:∠BDG=∠GDC=∠EDC=60°
在△BFD和△BGD中,∠FBD=∠GBD,∠FDB=∠GDB=60°,BD=BD,
∴△BFD≌△BGD,
∴FD=DG,
∴FD=ED.
點評:本題考查了三角形的內角和定理,角平分線的定義,以及全等三角形的性質,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案