如果式子
x+1
-
3
2-x
有意義,則x的取值范圍是
 
分析:讓二次根式的被開方數(shù)為非負(fù)數(shù),分式的分母不為0列式求得x的取值即可.
解答:解:由題意得
x+1≥0
2-x≠0

解得x≥-1且x≠2,
故答案為x≥-1且x≠2.
點(diǎn)評(píng):考查代數(shù)式有意義的條件;用到的知識(shí)點(diǎn)為:二次根式有意義,被開方數(shù)為非負(fù)數(shù);分式有意義,分母不為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如果一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,那么稱這個(gè)正整數(shù)為“智慧數(shù)”.例如:3=22-12,5=32-22,請(qǐng)你根據(jù)上述定義寫出一個(gè)智慧數(shù)的式子
7=42-32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【附加題】閱讀下面的材料,解答后面給出的問題:
兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個(gè)代數(shù)式互為有理化因式,例如
a
a
,
2
+1
2
-1

(1)請(qǐng)你再寫出兩個(gè)二次根式,使它們互為有理化因式:
 

這樣,化簡一個(gè)分母含有二次根式的式子時(shí),采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
2
3
=
2
3
3
3
=
6
3
.
2
3-
3
=
2
(3+
3
)
(3-
3
)(3+
3
)
=
3
2
+
6
9-3
=
3
2
+
6
6

(2)請(qǐng)仿照上面給出的方法化簡下列各式:
3-2
2
3+2
2
;②
1-b
1-
b
(b≠1)
;
(3)化簡
3
5
-
2
時(shí),甲的解法是:
3
5
-
2
=
3(
5
+
2
)
(
5
-
2
)(
5
+
2
)
=
5
+
2
,乙的解法是:
3
5
-
2
=
(
5
+
2
)(
5
-
2
)
5
-
2
=
5
+
2
,以下判斷正確的是( 。
A、甲的解法正確,乙的解法不正確B、甲的解法不正確,乙的解法正確
C、甲、乙的解法都正確D、甲、乙的解法都不正確
(4)已知a=
1
5
-2
,b=
1
5
+2
,則
a2+b2+7
的值為( 。
A、5    B、6    C、3     D、4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察:1=12,1+3=22,1+3+5=32 …
可得1+3+5+…+(2n-1)=
n2
n2

如果1+3+5+…+x=361,則奇數(shù)x的值為
37
37

(2)觀察式子:1+3=
(1+3)×2
2
; 1+3+5=
(1+5)×3
2
;1+3+5+7=
(1+7)×3
2
 …
按此規(guī)律計(jì)算1+3+5+7+…+2009=
10100025
10100025

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察一列數(shù):-2,-4,-8,-16,-32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;根據(jù)這個(gè)規(guī)律,如果a1表示第1項(xiàng),a2表示第2項(xiàng),an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=
-218
-218
;an=
-2n
-2n

(2)如果想求l+3+32+33+…+320的值,可令S=l+3+32+33+…+3201…①
將①式兩邊同乘以3,得
3S=3+32+33+34+…+3202
3S=3+32+33+34+…+3202
…②
由②減去①式,可以求得S=
1
2
(3202-1)
1
2
(3202-1)

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=
-a1qn-1
-a1qn-1
(用含a1,q,n的數(shù)學(xué)式子表示),如果這個(gè)常數(shù)為2008,求al+a2+…+an的值.(用含al,n的數(shù)學(xué)式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案