【題目】如圖,已知銳角△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D.
(1)求證:∠ACB+∠BAD=90°;
(2)過點D作DE⊥AB于E,若∠ADC=2∠ACB.求證:AC=2DE.
【答案】(1)證明見解析;(2)證明見解析
【解析】試題分析:(1)延長AD交⊙O于點F,連接BF.根據(jù)直徑對的圓周角是直角得出∠ABF=90°,∠AFB +∠BAD=90°,同弧所對的圓周角相等∠AFB=∠ACB,即可證明.
(2)如圖2中,過點O作OH⊥AC于H,連接BO.證明即可解決問題.
試題解析:(1)證明:延長AD交⊙O于點F,連接BF.
∵AF為⊙O的直徑,
∴∠ABF=90°,
∴∠AFB +∠BAD=90°,
∵∠AFB=∠ACB,
∴∠ACB+∠BAD=90°.
(2)證明:如圖2中,過點O作OH⊥AC于H,連接BO.
∵∠AOB=2∠ACB,
∠ADC=2∠ACB,
∴∠AOB=∠ADC,
∴∠BOD=∠BDO,
∴BD=BO,
∴BD=OA,
∵∠BED=∠AHO,∠ABD=∠AOH,
∴△BDE≌△AOH,
∴DE=AH,
∵OH⊥AC,
∴AH=CH=AC,∴AC=2DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(-1,0),B(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC.(提示:平行四邊形的面積=底×高)
(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.
(3)點P是線段BD上的一個動點,連接PC,PO,當點P在BD上移動時(不與B,D重合)的值是否發(fā)生變化,若不變請求出該值,若會變請并請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知(a+b)2=7,(a-b)2=4,求a2+b2和ab的值.
(2)分解因式:
①x2-8xy+16y2
②(x+y+1)2-(x-y+1)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AD為BC邊上的中線,則有S△ABD=S△ACD,許多面積問題可以轉(zhuǎn)化為這個基本模型解答.如圖②,已知△ABC的面積為1,把△ABC各邊均順次延長一倍,連結(jié)所得端點,得到△A1B1C1,即將△ABC向外擴展了一次,則擴展一次后的△A1B1C1的面積是_____,如圖③,將△ABC向外擴展了兩次得到△A2B2C2,……,若將△ABC向外擴展了n次得到△AnBnn,則擴展n次后得到的△AnBnn面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點為D.
(1)求點D的坐標(用含m的代數(shù)式表示);
(2)若該拋物線經(jīng)過點A(1,m),求m的值;
(3)在(2)的條件下,拋物線與x軸是否有交點,若有,求出交點坐標,若沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補充下列其中一個條件后,不一定能得到△ABC≌△DEF 的是( )
A.BC = EFB.AC//DFC.∠C = ∠FD.∠BAC = ∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com