【題目】如圖,雙曲線x0)經(jīng)過點(diǎn)A16)、點(diǎn)B2,n),點(diǎn)P的坐標(biāo)為(t,0),且-1≤t3,則△PAB的最大面積為_______________

【答案】6

【解析】

根據(jù)點(diǎn)A坐標(biāo)求出反比例函數(shù)解析式,再求出點(diǎn)B的坐標(biāo),最后根據(jù)同底高不同確定三角形的最大面積即可.

雙曲線x0)經(jīng)過點(diǎn)A16

∴k=xy=1×6=6

又:點(diǎn)B2,n)在

∴n=3

直線AB所在的解析式為:y=-3x+9

根據(jù)題意知:當(dāng)t=-1時(shí),即P-10)時(shí),△PAB的面積最大

設(shè)與直線AB垂直的直線解析式為:y=x+b

把點(diǎn)P-1,0)代入y=x+b,得b=

∴y=x+

設(shè)直線y=x+y=-3x+9交點(diǎn)為Q

解方程組得:

∴PQ=

又:AB=

∴△PAB的最大面積=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn)與思考)如圖①∠ACB=∠ADB90°那么點(diǎn)D在經(jīng)過A,BC三點(diǎn)的圓上,如圖②,如果∠ACB=∠ADBαα≠90°)(點(diǎn)CDAB的同側(cè)),那么點(diǎn)D還在經(jīng)過AB,C三點(diǎn)的圓上?

(應(yīng)用)若四邊形ABCD中,ADBC,∠CAD90°,點(diǎn)E在邊AB上,CEDE

1)作∠ADF=∠AED,交CA的延長(zhǎng)線于點(diǎn)F(如圖④),求證:DFRtACD的外接圓的切線;

2)如圖⑤,點(diǎn)GBC的延長(zhǎng)線上,∠BGE=∠BAC,已知sinAED,AD1,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),,延長(zhǎng)至點(diǎn),使得,過點(diǎn),垂足的延長(zhǎng)線上,連接.

1)求證:的切線;

2)當(dāng)時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤(rùn)為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的對(duì)角線AC上取點(diǎn)E,使得∠CDE=15°,連接BE.延長(zhǎng)BEF,連接CF,使得CF=BC

1)求證:DE=BE

2)求證:EF=CE+DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A8,1)、Bn,8)都在反比例函數(shù)x0)的圖象上,過點(diǎn)AAC⊥x軸于C,過點(diǎn)BBD⊥y軸于D

1)求m的值和直線AB的函數(shù)關(guān)系式;

2)動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿折線ODDBB點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QO點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線OCC點(diǎn)運(yùn)動(dòng),當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到D時(shí),點(diǎn)Q也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

設(shè)△OPQ的面積為S,寫出St的函數(shù)關(guān)系式;

如圖2,當(dāng)?shù)?/span>P在線段OD上運(yùn)動(dòng)時(shí),如果作△OPQ關(guān)于直線PQ的對(duì)稱圖形△O′PQ,是否存在某時(shí)刻t,使得點(diǎn)Q′恰好落在反比例函數(shù)的圖象上?若存在,求Q′的坐標(biāo)和t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有AB兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。

1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;

2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請(qǐng)用列表法或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對(duì)雙方是否公平。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A03),B3,4),C22.(正方形網(wǎng)格中, 每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2△ABC位似,且位似比為21,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以10/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:

銷售價(jià)格x(/千克)

10

13

16

19

22

日銷售量y(千克)

100

85

70

55

40

(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定yx之間的函數(shù)表達(dá)式;

(2)若該水果店要獲得375元的日銷售利潤(rùn),銷售單價(jià)x應(yīng)定為多少元?

(3)該水果店應(yīng)該如何確定這批水果的銷售價(jià)格,才能使日銷售利潤(rùn)W最大?并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案