(2005•淮安)下列基本圖形中,經(jīng)過平移、旋轉(zhuǎn)或軸對稱變換后,不能得到如圖的是( )

A.
B.
C.
D.
【答案】分析:根據(jù)平移、旋轉(zhuǎn)和軸對稱的性質(zhì)即可得出正確結(jié)果.
解答:解:A、經(jīng)過平移可得到上圖,錯誤;
B、經(jīng)過旋轉(zhuǎn)可得到上圖,錯誤;
C、經(jīng)過平移、旋轉(zhuǎn)或軸對稱變換后,都不能得到上圖,正確;
D、經(jīng)過旋轉(zhuǎn)可得到上圖,錯誤.
故選C.
點評:本題考查平移、旋轉(zhuǎn)和軸對稱的性質(zhì).
平移的基本性質(zhì):①平移不改變圖形的形狀、大小和方向;②經(jīng)過平移,對應(yīng)點所連的線段平行或在同一直線上,對應(yīng)線段平行且相等,對應(yīng)角相等.
旋轉(zhuǎn)的性質(zhì):①旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變;②兩組對應(yīng)點連線的交點是旋轉(zhuǎn)中心.
軸對稱的性質(zhì):①翻折變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變;②對稱軸是任何一對對應(yīng)點所連線段的垂直平分線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷18(高橋初中 鐘玲芳)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省淮安市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案