(2001•陜西)如圖,點(diǎn)I是△ABC的內(nèi)心,AI的延長線交邊BC于點(diǎn)D,交△ABC外接圓于點(diǎn)C.
(1)求證:IE=BE;
(2)若IE=4,AE=8,求DE的長.

【答案】分析:(1)連接IB,只需證明∠IBE=∠BIE.根據(jù)三角形的外角的性質(zhì)、三角形的內(nèi)心是三角形的角平分線的交點(diǎn)以及圓周角定理的推論即可證明;
(2)IE的長,即是BE的長,則可以把要求的線段和已知的線段構(gòu)造到兩個(gè)相似三角形中,進(jìn)行求解.
解答:(1)證明:連接IB.
∵點(diǎn)I是△ABC的內(nèi)心,
∴∠BAD=∠CAD,∠ABI=∠IBD.
又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,
∴BE=IE.

(2)解:在△BED和△AEB中,
∠EBD=∠CAD=∠BAD,∠BED=∠AEB.
∴△BED∽△AEB,
,
∵IE=4,AE=8,
∴BE=4,
即DE==2.
點(diǎn)評(píng):此題要理解三角形的內(nèi)心即是三角形角平分線的交點(diǎn),能夠熟練運(yùn)用三角形的外角的性質(zhì)、圓周角定理的推論以及相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2001•陜西)如圖⊙O1、⊙O2點(diǎn)外切于點(diǎn)A,外公切線BC與⊙O1切于點(diǎn)B,與⊙O2切于點(diǎn)C,與O2O1的延長線交于點(diǎn)P,已知∠P=30度.
(1)求⊙O1與⊙O2半徑的比;
(2)若⊙O1半徑為2m,求弧AB、弧AC及外公切線BC所圍成的圖形(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:解答題

(2001•陜西)如圖⊙O1、⊙O2點(diǎn)外切于點(diǎn)A,外公切線BC與⊙O1切于點(diǎn)B,與⊙O2切于點(diǎn)C,與O2O1的延長線交于點(diǎn)P,已知∠P=30度.
(1)求⊙O1與⊙O2半徑的比;
(2)若⊙O1半徑為2m,求弧AB、弧AC及外公切線BC所圍成的圖形(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•陜西)如圖,在直角坐標(biāo)系xoy中,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)已知OC⊥AB于C,求C點(diǎn)坐標(biāo);
(2)在x軸上是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市相城區(qū)初三第一學(xué)期調(diào)研測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•陜西)如圖,在直角坐標(biāo)系xoy中,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)已知OC⊥AB于C,求C點(diǎn)坐標(biāo);
(2)在x軸上是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案