【題目】如圖,點DBC上,DEAB于點E,DFBCAC于點F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

【答案】55°

【解析】

由圖示知:∠FDC+∠AFD=180°,則∠FCD=55°.通過全等三角形Rt△BDE≌△Rt△CFD(HL)的對應(yīng)角相等推知∠BDE=∠CFD.

如圖,∵∠FDC+∠FCD=∠AFD=145°,
∴∠FCD=55°.

∴∠CFD=35°
又∵DE⊥AB,DF⊥BC,
∴∠BED=∠CDF=90°,
Rt△BDE與△Rt△CFD中,
,
∴Rt△BDE≌△Rt△CFD(HL),
∴∠BDE=∠CFD=35°,
∠EDF+∠BDE=∠EDF+∠CFD=90°,
∴∠EDF=55°.
故答案是:55°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在讀數(shù)月活動中學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖。

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了 名同學;

2)條形統(tǒng)計圖中;

3)扇形統(tǒng)計圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;

4)學校計劃購買課外讀物8000冊,請根據(jù)樣本數(shù)據(jù),估計學校購買其他類讀數(shù)多少冊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:(1)a<O;(2)b2﹣4ac<0;(3)b>O;(4)a+b+c>0;(5)a﹣b+c>0.你認為其中正確信息的個數(shù)有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新運算“ab”的含義為:當a≥b時,ab=a+b;當ab時,ab=a-b.例如:3☆(-4=3+-4=-1,(-6)☆=-6-=-6

1)填空:(-4)☆3=______

2)如果(3x-4)☆(2x+8=3x-4-2x+8),求x的取值范圍;

3)如果(3x-7)☆(3-2x=2,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(1,0),B(2,﹣3),C(4,﹣2).

(1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

(2)畫出A1B1C1向左平移3個單位長度后得到的A2B2C2;

(3)如果AC上有一點P(m,n)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點P2的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知0≤x≤ ,那么函數(shù)y=﹣2x2+8x﹣6的最大值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量ym3)與放水時間t(分)有如下關(guān)系:

放水時間(分)

1

2

3

4

水池中水量(m3

38

36

34

32

下列結(jié)論中正確的是( 。

A. yt的增加而增大

B. 放水時間為15分鐘時,水池中水量為8m3

C. 每分鐘的放水量是2m3

D. yt之間的關(guān)系式為y40t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.

(1)問A、B兩種型號的收割機各多少臺?

(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務(wù)?

查看答案和解析>>

同步練習冊答案