某廠從2005年起開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:

年    度2006200720082009
投入技改資金x(萬(wàn)元)2.5344.5
產(chǎn)品成本y(萬(wàn)元/件)7.264.54

(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬(wàn)元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元)

解:(1)設(shè)其為一次函數(shù),解析式為y=kx+b,
當(dāng)x=2.5時(shí),y=7.2;當(dāng)x=3時(shí),y=6,

解得k=-2.4,b=13.2
∴一次函數(shù)解析式為y=-2.4x+13.2
把x=4時(shí),y=4.5代入此函數(shù)解析式,
左邊≠右邊.
∴其不是一次函數(shù).
同理.其也不是二次函數(shù).
設(shè)其為反比例函數(shù).解析式為y=
當(dāng)x=2.5時(shí),y=7.2,可得:7.2=解得k=18
∴反比例函數(shù)是y=
驗(yàn)證:當(dāng)x=3時(shí),y==6,符合反比例函數(shù).
同理可驗(yàn)證x=4時(shí),y=4.5,x=4.5時(shí),y=4成立.
可用反比例函數(shù)y=表示其變化規(guī)律.

(2)①當(dāng)x=5萬(wàn)元時(shí),y=3.6.
4-3.6=0.4(萬(wàn)元),
∴生產(chǎn)成本每件比2009年降低0.4萬(wàn)元.
②當(dāng)y=3.2萬(wàn)元時(shí),3.2=
∴x=5.625
∴5.625-5=0.625≈0.63(萬(wàn)元)
∴還約需投入0.63萬(wàn)元.
分析:(1)根據(jù)實(shí)際題意和數(shù)據(jù)特點(diǎn)分情況求解,根據(jù)排除法可知其為反比例函數(shù),利用待定系數(shù)法求解即可;
(2)直接把x=5萬(wàn)元和y=3.2分別代入函數(shù)解析式即可求解.
點(diǎn)評(píng):主要考查了反比例函數(shù)的應(yīng)用.解題的關(guān)鍵是根據(jù)實(shí)際意義列出函數(shù)關(guān)系式,從實(shí)際意義中找到對(duì)應(yīng)的變量的值,利用待定系數(shù)法求出函數(shù)解析式,再根據(jù)自變量的值求算對(duì)應(yīng)的函數(shù)值.要注意用排除法確定函數(shù)的類(lèi)型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某廠從2005年起開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度 2006 2007 2008 2009
投入技改資金x(萬(wàn)元) 2.5 3 4 4.5
產(chǎn)品成本y(萬(wàn)元/件) 7.2 6 4.5 4
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬(wàn)元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第1章《反比例函數(shù)》?碱}集(16):1.3 實(shí)際生活中的反比例函數(shù)(解析版) 題型:解答題

某廠從2005年起開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度2006200720082009
投入技改資金x(萬(wàn)元)2.5344.5
產(chǎn)品成本y(萬(wàn)元/件)7.264.54
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬(wàn)元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(69):23.6 反比例函數(shù)(解析版) 題型:解答題

某廠從2005年起開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度2006200720082009
投入技改資金x(萬(wàn)元)2.5344.5
產(chǎn)品成本y(萬(wàn)元/件)7.264.54
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬(wàn)元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江陵縣中考數(shù)學(xué)模擬訓(xùn)練卷(一)(解析版) 題型:解答題

(2006•臨沂)某廠從2005年起開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度2006200720082009
投入技改資金x(萬(wàn)元)2.5344.5
產(chǎn)品成本y(萬(wàn)元/件)7.264.54
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從你所學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說(shuō)明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2009年降低多少萬(wàn)元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元)

查看答案和解析>>

同步練習(xí)冊(cè)答案