分析 (1)首先由△ABC和△CEF均為等腰直角三角形可得AC:BC=CE:CF,∠ACE=∠BCF;然后根據(jù)相似三角形判定的方法,推得△CAE∽△CBF即可;
(2)首先根據(jù)△CAE∽△CBF,判斷出∠CAE=∠△CBF,再根據(jù)∠CAE+∠CBE=90°,判斷出∠EBF=90°;然后在Rt△BEF中,根據(jù)勾股定理,求出EF的長度,再根據(jù)CE、EF的關(guān)系,求出CE的長是多少即可.
解答 (1)證明:∵△ABC和△CEF均為等腰直角三角形,
∴$\frac{AC}{BC}$=$\frac{CE}{CF}$=$\sqrt{2}$,
∴∠ACB=∠ECF=45°,
∴∠ACE=∠BCF,
∴△CAE∽△CBF;
(2)解:∵△CAE∽△CBF,
∴∠CAE=∠CBF,$\frac{AE}{BF}$=$\frac{AC}{BC}$=$\sqrt{2}$,
又∵$\frac{AE}{BF}$=$\frac{AC}{BC}$=$\sqrt{2}$,AE=2
∴$\frac{2}{BF}$=$\sqrt{2}$,∴BF=$\sqrt{2}$,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
∴EF2=BE2+BF2=12+($\sqrt{2}$)2=3,
∴EF=$\sqrt{3}$,
∵CE2=2EF2=6,
∴CE=$\sqrt{6}$.
點(diǎn)評 此題考查相似三角形的判定和性質(zhì),正方形的性質(zhì),掌握相似三角形的判定方法是解決問題的前提.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 40° | B. | 30° | C. | 20° | D. | 10° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com