如圖.半徑均為0.5cm的⊙A、⊙B、⊙C兩兩外離,求圖中陰影部分的面積.

答案:略
解析:

陰影部分面積=×=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)如圖.點(diǎn)A、B在直線MN上,AB=8cm,⊙A、⊙B的半徑均為1cm,⊙A以2cm/s的速度沿AB方向運(yùn)動(dòng),與此同時(shí),⊙B的半徑也在不斷增大,其半徑r(cm)與時(shí)間t(s)的函數(shù)關(guān)系式為r=1+t(t≥0),則點(diǎn)A出發(fā)后
3秒、
11
3
秒、11秒、13
3秒、
11
3
秒、11秒、13
秒時(shí)兩圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2011•石家莊二模)閱讀材料:
我們將能完全覆蓋平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.
例如:線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
操作探究:
(1)如圖1:已知線段AB與其外一點(diǎn)C,作過(guò)A、B、C三點(diǎn)的最小覆蓋圓;(不寫(xiě)作法,保留作圖痕跡)
(2)邊長(zhǎng)為1cm的正方形的最小覆蓋圓的半徑是
2
2
2
2
cm;
如圖2,邊長(zhǎng)為1cm的兩個(gè)正方形并列在一起,則其最小覆蓋圓的半徑是
5
2
5
2
cm;
如圖3,半徑為1cm的兩個(gè)圓外切,則其最小覆蓋圓的半徑是
2
2
cm.
聯(lián)想拓展:
⊙O1的半徑為8,⊙O2,⊙O3的半徑均為5.
(1)當(dāng)⊙O1、⊙O2、⊙O3兩兩外切時(shí)(如圖4),則其最小覆蓋圓的半徑是
40
3
40
3

(2)當(dāng)⊙O1、⊙O2、⊙O3兩兩相切時(shí),(1)中的結(jié)論還成立嗎?如果不成立,則其最小覆蓋圓的半徑是
13
13
,并作出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個(gè)圖案共用兩種卡片
8張,則這個(gè)圖案中陰影部分的面積之和為
π
π
; 若擺放這個(gè)圖案共用兩種卡片(2n+1)張( n為正整數(shù)),則這個(gè)圖案中陰影部分的面積之和為
3n+2
12
π
3n+2
12
π
.(結(jié)果保留π )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O1、⊙O2的半徑均為2cm,⊙O3、⊙O4的半徑均為1cm,⊙O的半徑為3cm,⊙O與其他四個(gè)圓均相外切,圖形既關(guān)于O1O2所在直線對(duì)稱(chēng),又關(guān)于O3O4所在直線對(duì)稱(chēng),則四邊形O1O4O2O3的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案