精英家教網 > 初中數學 > 題目詳情

【題目】現有一塊三角形的空地,其三邊的長分別為20m,30m40m,現要把它分成面積為234的三部分,分別種植不同的花草,請你設計一種方案,并簡單說明理由.

【答案】見解析

【解析】

分別作∠C和∠B的角平分線,它們相交于點P,連接PA,經過點PPEAB于點E,PFAC于點F,PHBC于點H,利用SABP=AB×PE,SBCP=BC×PH,SACP=AC×PF,得出面積比即可.

方案:如圖,分別作∠C和∠B的平分線,它們相交于點P,連接PA,

△PAB,△PAC,△PBC的面積之比就是2∶3∶4.理由:如圖,過點PPE⊥AB于點E,PF⊥AC于點F,PH⊥BC于點H.∵P∠C∠B的平分線上的點,∴PE=PF=PH.∴SABPAB×PE=10PE,SBCPBC×PH=20PH,SACPAC×PF=15PF,∴SABP∶SACP∶SBCP=10PE∶15PF∶20PH=2∶3∶4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,邊長為4,E為AD延長線上一點,DE=x(0<x<4),在AE上取一點M,連接CM,將△CME沿CM對折,若點E恰落在線段AB上的點F處,則AM=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有理數a,b,c在數軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a,b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某校九年級學生的身高情況,隨機抽取了部分學生的身高進行調查,利用所得數據繪成如下統(tǒng)計圖表:

頻數分布表

身高分組/cm

頻數

百分比

5

10%

20%

15

30%

14

6

12%

總計

100%

(1)填空:______;

(2)通過計算補全頻數分布直方圖;

(3)該校九年級一共有600名學生,估計身高不低于165cm的學生大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某教學樓AB的后面有一建筑物CD,當光線與地面夾角是22°時,教學樓在建筑物的墻上留下高2米的影子CE;而當光線與地面夾角是45°時,教學樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上),求教學樓AB的高度(sin22°≈ ,cos22°≈ ,tan22°≈

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩名射擊運動員中進行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績如圖所示.

根據圖中信息,回答下列問題:

(1)甲的平均數是___________,乙的中位數是______________;

(2)分別計算甲、乙成績的方差,并從計算結果來分析,你認為哪位運動員的射擊成績更穩(wěn)定?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數據:sin53°= ,cos = ,tan53°= ≈1.732,結果精確到0.1米)

查看答案和解析>>

同步練習冊答案