設P=,Q=,R=.則P、Q、R的大小關系為

[  ]

A.P>Q>R
B.Q>P>R
C.P>R>Q
D.R>Q>P
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:044

傳說波斯國王,出了下列算題懸賞大臣:

我的3只金碗里放著數(shù)目相同的珍珠,我把第一只金碗里的珍珠的一半給我大兒子,把第二只金碗里的珍珠的給我二兒子,把第三只金碗里的珍珠的給我的小兒子,然后再把第一只金碗里的4顆珍珠給我大女兒,把第二只金碗里的6顆珍珠給我二女兒,把第三只金碗里的2顆珍珠給我小女兒,這樣第一只金碗里剩下38顆珍珠,第二只金碗里剩下22顆珍珠,第三只金碗里剩下19顆珍珠,試問:我的3只金碗里原來分別放著多少顆珍珠?

第一個大臣認為第一只金碗里的一半為(38+4)顆,所以第一只金碗里有2(38+4)=84(顆).第二只金碗里的為(22+6)顆,所以第二只金碗里有3(22+6)=84(顆).第三只金碗里的為(19+2)顆,所以第三只金碗里有4(19+2)=84(顆).所以國王三只金碗里分別放著84顆珍珠.

第二個大臣設第一只金碗里有x顆珍珠,由題意列出方程x+4+38=x解得x=84,設第二只金碗里有y顆珍珠,由題意列出方程專y+6+22=y(tǒng),解得y=84,設第三只金碗里有z顆珍珠,由題意列出方程z+2+19=z,解得z=84.所以國王三只金碗里分別放著84顆珍珠

第三個大臣設國王的每只金碗里放著x顆珍珠,a代表國王給兒子的珍珠占碗里的珍珠數(shù)的幾分之幾,b代表國王給女兒的珍珠數(shù),c代表碗里剩下的珍珠數(shù).由題意列出方程ax+b+c=x,(1-a)x=b+c,x=

請你將(1)b=4,c=38,a=;(2)b=6,c=22,a=;(3)b=2,c=19,a=分別代入x=,計算一下x的值是否與第一個、第二個大臣算出的珍珠數(shù)相符?并請你為波斯國王當一回“參謀”,三個大臣該如何得到國王的懸賞?

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江西省吉安市朝宗實驗學校七年級下學期第一次段考數(shù)學試卷(帶解析) 題型:解答題

如圖所示,平面內(nèi),AB∥CD,點E、F分別在直線AB、CD上,點P是這兩條直線外的一個動點,連接EP、FP,設∠AEP=∠,∠CFP=∠,∠EPF=∠。

(1)如果點P在直線AB、CD之間,那么∠、∠、∠之間有怎樣的數(shù)量關系(以圖①為例)?并說明理由。
(2)在(1)中的條件下,請畫出符合條件的其他圖形(每一種位置只畫一個示意圖),并直接寫出∠、∠、∠之間的數(shù)量關系。(提示:對點P與直線EF的位置關系進行討論)
(3)如果點P在直線AB上方,請畫出所有符合題意的圖形(每一種位置只畫一個示意圖),并探索∠、∠、∠之間的數(shù)量關系,選一種圖形說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2015屆江西省七年級下學期第一次段考數(shù)學試卷(解析版) 題型:解答題

如圖所示,平面內(nèi),AB∥CD,點E、F分別在直線AB、CD上,點P是這兩條直線外的一個動點,連接EP、FP,設∠AEP=∠,∠CFP=∠,∠EPF=∠。

(1)如果點P在直線AB、CD之間,那么∠、∠、∠之間有怎樣的數(shù)量關系(以圖①為例)?并說明理由。

(2)在(1)中的條件下,請畫出符合條件的其他圖形(每一種位置只畫一個示意圖),并直接寫出∠、∠、∠之間的數(shù)量關系。(提示:對點P與直線EF的位置關系進行討論)

(3)如果點P在直線AB上方,請畫出所有符合題意的圖形(每一種位置只畫一個示意圖),并探索∠、∠、∠之間的數(shù)量關系,選一種圖形說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,AB=5,BC=10,FAD的中點,CEABE,設∠ABCα(60°≤α<90°).

(1)當α=60°時,求CE的長;

(2)當60°<α<90°時,

①是否存在正整數(shù)k,使得∠EFDkAEF?若存在,求出k的值;若不存在,請說明理由.

②連接CF,當CE2CF2取最大值時,求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式計算即可得解;

(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應邊相等可得CFGFAGCD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EFGF,再根據(jù)ABBC的長度可得AGAF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;

②設BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD是∠A的外角平分線,P是AD上異于A的任意一點,設PB=,PC=,AB=,AC=,則的大小關系是(    )

    A、     B、    C、     D、無法確定

查看答案和解析>>

同步練習冊答案