【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90o,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE=AC+AD,其中結(jié)論正確的是___________(填序號(hào))
【答案】①②③
【解析】
根據(jù)全等、等腰三角形以及三角形邊的性質(zhì)即可得出答案.
∵∠BAC=∠DAE=90o,AB=AC,AD=AE
又∠BAD=∠BAC+∠CAD
∠CAE=∠EAD+∠CAD
∴∠BAD=∠CAE
∴△BAD≌△CAE(SAS)
∴BD=CE,故選項(xiàng)①正確;
∴∠BDA=∠CEA=45°
又∠ADE=45°
∴∠BDE=∠ADE+∠BDA=90°
∴BD⊥CE,故選項(xiàng)②正確;
∵△BAD≌△CAE
∴∠ACE=∠ABD
又∠ABC=∠ABD+∠CBD=∠ACE+∠CBD=45°,故選項(xiàng)③正確;
在△BAE中
AB+AE>BE
又AB=AC,AE=AD
∴AC+AD>BE,故選項(xiàng)④錯(cuò)誤;
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.
(1)如圖1,點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿CB勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇.設(shè)點(diǎn)P的速度為xcm/s. 表示點(diǎn)Q的速度是多少cm/s(用含的代數(shù)式表示);
(2)在(1)的條件下,兩點(diǎn)在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了2 cm,并沿B→C→A的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持原速度不變,沿B→A→C的路徑勻速運(yùn)動(dòng),如圖2.兩點(diǎn)在AC邊上點(diǎn)D處再次相遇后停止運(yùn)動(dòng).又知AD=1cm.求點(diǎn)P原來(lái)的速度x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫(xiě)上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,直線l為BC的中垂線,射線m為∠ABC的角平分線,直線l與m相交于點(diǎn)P.若∠BAC=60°,∠ACP=24°,則∠ABP的度數(shù)是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線EG交AB于點(diǎn)E,交AB的平行線CG于點(diǎn)G,DF⊥EG,交AC于點(diǎn)F.
(1)求證:BE=CG;
(2)判斷BE+CF與EF的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016山東省濟(jì)寧市)如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( 。
A. 60B. 80C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立模型:
如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線l上.
操作:
過(guò)點(diǎn)A作AD⊥l于點(diǎn)D,過(guò)點(diǎn)B作BE⊥l于點(diǎn)E.求證:△CAD≌△BCE.
模型應(yīng)用:
(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問(wèn)點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABDC中,,點(diǎn)O為BD的中點(diǎn),且OA平分.
(1)求證:OC平分;
(2)求證:;
(3)求證:AB+CD=AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com