如圖,⊙O的直徑AB垂直弦CD于M,且M是半徑OB的中點(diǎn),CD=8cm,求直徑AB的長(zhǎng).
連接OC,
∵直徑AB⊥CD,
∴CM=DM=
1
2
CD=4
cm,(2分)
∵M(jìn)是OB的中點(diǎn),
∴OM=
1
2
OB=
1
2
OC

由勾股定理得:
OC2=OM2+CM2
OC2=
1
4
OC2+42
,
∴OC=
8
3
3
cm(3分)
∴直徑AB的長(zhǎng)=
16
3
3
cm.(1分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中A(-2,3),B(-3,1),C(-1,2).
(1)將△ABC向右平移4個(gè)單位長(zhǎng)度,畫出平移后的△A1B1C1;
(2)畫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2;
(3)將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A3B3C3
(4)在△A1B1C1、△A2B2C2、△A3B3C3中,△______與△______成軸對(duì)稱,對(duì)稱軸是______;△______與△______成中心對(duì)稱,對(duì)稱中心的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

⊙O的半徑r=1,弦AC=
2
,弦AB=
3
,則∠BAC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一車轱轆⊙O抵住高為10cm的路沿AB,此時(shí)發(fā)現(xiàn)輪胎與地面的接觸點(diǎn)C與路沿下端B的距離恰好為30cm(∠ABC=90°),請(qǐng)你利用已學(xué)的知識(shí),求出車轱轆的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的弦AB垂直于直徑MN,C為垂足,若OA=5cm,下面四個(gè)結(jié)論中可能成立的是( 。
A.AB=12cmB.OC=6cmC.MN=8cmD.OC=2.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E.若EB=8cm,CD=24cm,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

過⊙O內(nèi)一點(diǎn)P的最長(zhǎng)弦長(zhǎng)為10cm,最短弦長(zhǎng)為6cm,則OP的長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O直徑,OB=6,弦CD=10,則弦心距OP的長(zhǎng)為( 。
A.8B.4C.
26
D.
11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的半徑是10cm,點(diǎn)A在⊙O上,線段AC交⊙O于點(diǎn)B,AC=23cm,AB=12cm,點(diǎn)P在線段AC上,設(shè)AP=x(cm),OP=y(cm).
(1)求y關(guān)于x的函數(shù)關(guān)系式,及x的取值范圍;
(2)當(dāng)x=4、14時(shí),求y的值;
(3)當(dāng)y=8時(shí),求x的值;
(4)當(dāng)x為何值時(shí),10≤y≤17?

查看答案和解析>>

同步練習(xí)冊(cè)答案