(2011•泉州質(zhì)檢)已知:如圖,等邊△ABC和正方形ACPQ的邊長都是1,在圖形所在的平面內(nèi),以點A為旋轉(zhuǎn)中心將正方形ACPQ沿逆時針方向旋轉(zhuǎn)α,使AQ與AB重合,則:
(1)旋轉(zhuǎn)角α=
210
210
°;
(2)點P從開始到結束所經(jīng)過的路線長為
7
2
6
π
7
2
6
π
分析:(1)根據(jù)△ABC是等邊三角形,ACPQ是正方形,得出∠BAC=60°,∠CAQ=90°,求出∠BAQ的度數(shù)即可求出旋轉(zhuǎn)角α;
(2)連接AP,得出AP的長,根據(jù)旋轉(zhuǎn)角和弧長公式即可求出點P從開始到結束所經(jīng)過的路線長;
解答:解:(1)∵∠BAC=60°,∠CAQ=90°,
∴∠α=∠BAQ=360°-60°-90°=210°,
∴旋轉(zhuǎn)角α=210°,

(2)連接AP,
∵AP=
AC2+PC2
=
2

∴點P從開始到結束所經(jīng)過的路線長為=
210•π×
2
180
=
7
2
6
π
;
故填:210°,
7
2
6
π
點評:此題考查了旋轉(zhuǎn)的性質(zhì);關鍵是作出輔助線,列出求路線長的式子.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•泉州質(zhì)檢)如圖,點P(m,1)是雙曲線y=
3
x
上的一點,PT⊥x軸于點T,把△PTO沿直線OP翻折得到△PT′O,則∠T′OT等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•泉州質(zhì)檢)據(jù)中國經(jīng)濟信息網(wǎng)報道,2010年中國外商直接投資105700000000元,用科學記數(shù)法表示為
1.057×1011
1.057×1011
元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•泉州質(zhì)檢)五邊形的外角和等于
360
360
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•泉州質(zhì)檢)如圖,AB=AC=10cm,BC=12cm,BF∥AC,點P、Q均以1cm/s的速度同時分別從C、A出發(fā)沿CA,AB的方向運動(當P到達A點時,點P、Q均停止運動),過點P作PE∥BC,分別交AB、BF于點G、E,設運動時間為ts.
(1)直接判斷并填寫:
經(jīng)過t秒,線段AP=
10-t
10-t
cm(用含t的代數(shù)式表示),線段QE
=
=
QP(用“>、<、=、≥、≤”符號表示);
(2)四邊形EBPA的面積會變化嗎?請說明理由:
(3)①當0<t<5時,求出四邊形EBPA的面積S與t的函數(shù)關系式;
②試探究:當t為何值時,四邊形EBPQ是梯形.

查看答案和解析>>

同步練習冊答案