【題目】問題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點,P是⊙O上一動點,求PM的最大值.
問題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).
圖① 圖② 圖③
【答案】(1)5;(2)18;(3)(3-9)km.
【解析】(1)如圖(1),設外接圓的圓心為O,連接OA, OB,根據已知條件可得△AOB是等邊三角形,由此即可得半徑;
(2)如圖(2)所示,連接MO并延長交⊙O于N,連接OP,顯然,MN即為MP的最大值,根據垂徑定理求得OM的長即可求得MN的最大值;
(3) 如圖(3)所示,假設P點即為所求點,分別作出點P關于AB、AC的對稱點P、P"連接PP、PE,PE,P"F,PF,PP",則PP"即為最短距離,其長度取決于PA的長度, 根據題意正確畫出圖形,得到點P的位置,根據等邊三角形、勾股定理等進行求解即可得PE+EF+FP的最小值.
(1)如圖(1),設外接圓的圓心為O,連接OA, OB,
∵O是等腰三角形ABC的外心,AB=AC,
∴∠BAO=∠OAC=∠BAC==60°,
∵OA=OB,
∴△AOB是等邊三角形,
∴OB=AB=5,
故答案為:5;
(2)如圖(2)所示,連接MO并延長交⊙O于N,連接OP,
顯然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,
∴PM的最大值為18;
(3) 如圖(3)所示,假設P點即為所求點,分別作出點P關于AB、AC的對稱點P、P"連接PP、PE,PE,P"F,PF,PP"
由對稱性可知PE+EF+FP=PE+EF+FP"=PP",且P、E、F、P"在一條直線上,所以PP"即為最短距離,其長度取決于PA的長度,
如圖(4),作出弧BC的圓心O,連接AO,與弧BC交于P,P點即為使得PA最短的點,∵AB=6km,AC=3km,∠BAC=60°,
∴ABC是直角三角形,∠ABC=30°,BC=3,
BC所對的圓心角為60°,∴OBC是等邊三角形,∠CBO=60°,BO=BC=3,
∴∠ABO=90°,AO=3,PA=3-3,
∠PAE=∠EAP,∠PAF=∠FAP",
∴∠PAP"=2∠ABC=120°,PA=AP",
∴∠APE=∠AP"F=30°,
∵PP"=2PAcos∠APE=PA=3-9,
所以PE+EF+FP的最小值為3-9km.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2mx+3m與x軸交于A、B兩點,與y軸交于點C(0,﹣3)
(1)求該拋物線的解析式;
(2)點D為該拋物線上的一點、且在第二象限內,連接AC,若∠DAB=∠ACO,求點D的坐標;
(3)若點E為線段OC上一動點,試求2AE+EC的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結果保留整數,≈1.7,≈1.4 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規(guī)作圖:
已知:∠AOB.
求作:射線OC,使它平分∠AOB.
作法:
(1)以O為圓心,任意長為半徑作弧,交OA于D,交OB于E;
(2)分別以D、E為圓心,大于DE的同樣長為半徑作弧,兩弧相交于點C;
(3)作射線OC.
所以射線OC就是所求作的射線.
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連結CE,CD.
∵OE=OD, = ,OC=OC,
∴△OEC≌△ODC(依據: ),
∴∠EOC=∠DOC,
即OC平分∠AOB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結果精確到1米,參考數據:sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設四邊形PMQN的面積為S,求出S與自變量t之間的函數關系式,并求S的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com