初一(10)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩點A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達(dá)A、B的點C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點作AB的垂線BF,再在BF上取C、D兩點使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀后回答下列問題:
(1)方案(Ⅰ)是否可行?請說明理由。
(2)方案(Ⅱ)是否可行?請說明理由。
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是 ;
若僅滿足∠ABD=∠BDE≠90°, 方案(Ⅱ)是否成立? .
(1)方案(Ⅰ)可行,理由見解析(2)方案(Ⅱ)可行,理由見解析(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)成立,理由見解析
解析:解:(1)方案(Ⅰ)可行;
∵DC=AC,EC=BC且有對頂角∠ACB=∠DCE
∴△ACB≌△DCE(SAS)
∴AB=DE
∴測出DE的距離即為AB的長
故方案(Ⅰ)可行.
(2)方案(Ⅱ)可行;
∵AB⊥BC,DE⊥CD
∴∠ABC=∠EDC=90°
又∵BC=CD,∠ACB=∠ECD
∴△ABC≌△EDC
∴AB=ED
∴測出DE的長即為AB的距離
故方案(Ⅱ)可行.
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.
若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)成立;
理由:∵∠ABD=∠BDE≠90°,BC=CD,∠ACB=∠ECD,
∴△ACB≌△DCE(ASA)
∴AB=DE
∴測出DE的距離即為AB的長
(1)由題意可證明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由題意可證明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若僅滿足∠ABD=∠BDE≠90°,故此時方案(Ⅱ)成立
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省宿遷市四校七年級5月聯(lián)考數(shù)學(xué)卷(帶解析) 題型:解答題
初一(10)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩點A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達(dá)A、B的點C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點作AB的垂線BF,再在BF上取C、D兩點使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀后回答下列問題:
(1)方案(Ⅰ)是否可行?請說明理由。
(2)方案(Ⅱ)是否可行?請說明理由。
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是 ;
若僅滿足∠ABD=∠BDE≠90°, 方案(Ⅱ)是否成立? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆江蘇省宿遷市四校七年級5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題
初一(10)班同學(xué)到野外上數(shù)學(xué)活動課,為測量池塘兩點A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達(dá)A、B的點C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點作AB的垂線BF,再在BF上取C、D兩點使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀后回答下列問題:
(1)方案(Ⅰ)是否可行?請說明理由。
(2)方案(Ⅱ)是否可行?請說明理由。
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是 ;
若僅滿足∠ABD=∠BDE≠90°, 方案(Ⅱ)是否成立? .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com