(2009•同安區(qū)質(zhì)檢)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)C1
(1)求拋物線的對(duì)稱軸及點(diǎn)C、C1的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對(duì)稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C、C1、P、Q為頂點(diǎn)的四邊形是平行四邊形,求所有平行四邊形的周長(zhǎng).
分析:(1)根據(jù)拋物線的解析式y(tǒng)=x2-2x-m(m>0)可求出對(duì)稱軸直線,令x=0,可求出C點(diǎn)坐標(biāo),根據(jù)其對(duì)稱軸可求出C1的坐標(biāo).
(2)畫出圖形,根據(jù)平行四邊形的性質(zhì),令對(duì)邊平行且相等或?qū)蔷互相垂直平分解答即可求出P的坐標(biāo),再根據(jù)勾股定理求出各邊長(zhǎng),即可求出四邊形周長(zhǎng).
解答:解:(1)∵y=x2-2x-m=(x-1)2-1-m,
∴對(duì)稱軸為直線x=1,
令x=0,得y=-m,即C(0,-m),
又∵C1與C點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,
∴C1(2,-m);

(2)如圖所示
①當(dāng)P′Q∥CC1且P′Q=2時(shí),P′橫坐標(biāo)為3,代入二次函數(shù)解析式求得P′(3,3-m),
②當(dāng)PQ∥CC1且PQ=2時(shí),P橫坐標(biāo)為-1,代入二次函數(shù)解析式求得P(-1,3-m),
③因?yàn)镃C1⊥Q'P″,當(dāng)Q′F=P″F,CF=C1F時(shí),P″為二次函數(shù)頂點(diǎn)坐標(biāo),為(1,-1-m),
由于P″和Q′關(guān)于直線CC1對(duì)稱,
所以Q′縱坐標(biāo)為2(-m)+1+m=-m+1,
得Q′(1,1-m),
所以滿足條件的P、Q坐標(biāo)為P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m),
∵Q點(diǎn)縱坐標(biāo)為3-m,C點(diǎn)縱坐標(biāo)為-m,
∴CW=3-m+m=3,又因?yàn)閃Q=1,
∴CQ=
12+32
=
10
,又因?yàn)镃C1=2,
∴平行四邊形CC1P′Q周長(zhǎng)為(2+
10
)×2=4+2
10
,
同理,平行四邊形CC1QP周長(zhǎng)也為4+2
10
;
∵CF=1,F(xiàn)Q=
1
2
[1-m-(-1-m)]=1,C′Q=
12+12
=
2

∴平行四邊形CC1P′Q周長(zhǎng)為4
2
,
綜上所述:平行四邊形周長(zhǎng)為4+2
10
或4
2
點(diǎn)評(píng):本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及坐標(biāo)與圖形變化-對(duì)稱,得到拋物線的對(duì)稱軸為直線x=1是解題的關(guān)鍵本,此題是一道中考?jí)狠S題,尤其是(2)題,有一定的開放性,一定要借助函數(shù)的圖象進(jìn)行解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•同安區(qū)質(zhì)檢)(1)計(jì)算:
4
+(-2009)0-(
1
3
)-1+4sin30°

(2)先化簡(jiǎn),再求值:a(a+2)-a2,其中a=-
1
2

(3)解方程:
2
x-3
=
3
x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•同安區(qū)質(zhì)檢)如圖,一次函數(shù)的圖象經(jīng)過M點(diǎn),與x軸交于A點(diǎn),與y軸交于B點(diǎn),根據(jù)圖中信息求:
(1)直線AB的函數(shù)關(guān)系式;
(2)若點(diǎn)P(m,n)是直線AB上的一動(dòng)點(diǎn),且-3≤m≤2,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•同安區(qū)質(zhì)檢)小明與他的爸爸一起做投籃球游戲,兩人商量規(guī)則為:小明投中1個(gè)球得3分,小明爸爸投中1個(gè)球得1分.結(jié)果兩人一共得了20分.
(1)若兩人一共投中12個(gè)球,則他們兩個(gè)各投中幾個(gè)球?
(2)若小明投中球的個(gè)數(shù)比他的爸爸多,則他們各投中幾個(gè)球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•同安區(qū)質(zhì)檢)將兩塊全等的含30°角的三角尺如圖1擺放在一起,它們的較短直角邊長(zhǎng)為3
(1)將△ECD沿直線l向左平移到圖2的位置,使E點(diǎn)落在AB上,點(diǎn)C平移后的對(duì)應(yīng)點(diǎn)為C1,則CC1=
3-
3
3-
3
;將△ECD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖3的位置,使點(diǎn)E恰好落在AB上,則△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)=
30
30
度;(本小題直接寫出結(jié)果即可)
(2)將△ECD沿直線AC翻折到圖4的位置,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D1,ED1與AB相交于點(diǎn)F,求證:AF=FD1

查看答案和解析>>

同步練習(xí)冊(cè)答案