【題目】如圖,反比例函數(shù)的圖象經(jīng)過(guò)線段OA的端點(diǎn)A,O為原點(diǎn),作AB⊥x軸于點(diǎn)B,點(diǎn)B的坐標(biāo)為(2,0),tan∠AOB=

1)求k的值;

2)將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)的圖象恰好經(jīng)過(guò)DC的中點(diǎn)E,求直線AE的函數(shù)表達(dá)式;

3)若直線AEx軸交于點(diǎn)M、與y軸交于點(diǎn)N,請(qǐng)你探索線段AN與線段ME的大小關(guān)系,寫出你的結(jié)論并說(shuō)明理由.

【答案】解:(1)k= 6

(2)

(3)AN=ME

【解析】

(1)在直角△AOB中利用三角函數(shù)求得A的坐標(biāo),然后利用待定系數(shù)法即可求得k的值.

(2)已知EDC的中點(diǎn),則E的縱坐標(biāo)已知,代入反比例函數(shù)的解析式即可求得E的坐標(biāo),然后利用待定系數(shù)法即可求得直線的解析式.

(3)首先求得M、N的坐標(biāo),延長(zhǎng)DAy軸于點(diǎn)F,則AF⊥ON,利用勾股定理求得ANEM的長(zhǎng),即可證得.

解:(1)由已知條件得,在Rt△OAB中,OB=2,tan∠AOB=,∴.∴AB=3.

∴A點(diǎn)的坐標(biāo)為(2,3).

∴k=xy=6.

(2)∵DCAB平移得到,點(diǎn)EDC的中點(diǎn),點(diǎn)E的縱坐標(biāo)為

點(diǎn)E在雙曲線上,點(diǎn)E的坐標(biāo)為(4,).

設(shè)直線AE的函數(shù)表達(dá)式為,則

,解得

直線AE的函數(shù)表達(dá)式為

(3)結(jié)論:AN=ME.理由:

在表達(dá)式中,令y=0可得x=6,令x=0可得y=

點(diǎn)M(6,0),N(0,).

解法一:延長(zhǎng)DAy軸于點(diǎn)F,則AF⊥ON,且AF=2,OF=3,

∴NF=ON-OF=

根據(jù)勾股定理可得AN=

∵CM=6-4=2,EC=

根據(jù)勾股定理可得EM=

∴AN=ME.

解法二:連接OE,延長(zhǎng)DAy軸于點(diǎn)F,則AF⊥ON,且AF=2,

,

∵ANME邊上的高相等,

∴AN=ME.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線yx2x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)yx2+bx+c的圖象經(jīng)過(guò)BC兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A

1)直接寫出:b的值為   ;c的值為   ;點(diǎn)A的坐標(biāo)為   ;

2)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.設(shè)點(diǎn)D的橫坐標(biāo)為m

如圖1,過(guò)點(diǎn)DDMBC于點(diǎn)M,求線段DM關(guān)于m的函數(shù)關(guān)系式,并求線段DM的最大值;

若△CDM為等腰直角三角形,直接寫出點(diǎn)M的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,交于點(diǎn),點(diǎn)上,經(jīng)過(guò)兩點(diǎn),交于點(diǎn),交于點(diǎn).

1)求證:的切線;

2)若的半徑是,是弧的中點(diǎn),求陰影部分的面積(結(jié)果保留和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為6的正方形沿其對(duì)角線剪開(kāi),再把沿著方向平移,得到,當(dāng)兩個(gè)三角形重疊部分的面積為5時(shí),則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙的外接圓,,過(guò)點(diǎn)的切線與的延長(zhǎng)線交于點(diǎn),于點(diǎn),.

1)判斷的位置關(guān)系,并說(shuō)明理由;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB6,AC3,∠BAC60°,為⊙O上的一段弧,且∠BOC60°,分別在、線段ABAC上選取點(diǎn)PE、F,則PEEFFP的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè),頂點(diǎn)的坐標(biāo)分別是.繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中作出,并寫出的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線的解析表達(dá)式為,且軸交于點(diǎn),直線經(jīng)過(guò)點(diǎn),直線,交于點(diǎn)

1求點(diǎn)的坐標(biāo);

2求直線的解析表達(dá)式;

3的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D、E、F、G,如圖所示.已知∠CGD42

1)求∠CEF的度數(shù).

2)將直尺向下平移,使直尺的邊緣通過(guò)點(diǎn)B,交AC于點(diǎn)H,如圖所示.點(diǎn)H、B的讀數(shù)分別為413.4,求BC的長(zhǎng)(精確到0.1)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90

查看答案和解析>>

同步練習(xí)冊(cè)答案