【題目】如圖,四邊形中,,,,將繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接,過點(diǎn)作于點(diǎn),交于點(diǎn).
(1)如圖,.
①求證:四邊形是正方形;
②求證:是中點(diǎn);
(2)如圖,若,請判斷是否仍然是的中點(diǎn)?若是,請證明;若不是,請說明理由.
【答案】(1)①詳見解析;②詳見解析;(2)點(diǎn) 仍然是的中點(diǎn),證明詳見解析.
【解析】
(1)①根據(jù)題意得出四邊形 是平行四邊形,再由,,得出矩形是正方形.②由①得出,從而得到,再求出,即可解答
(2)延長,交于點(diǎn),延長交 于點(diǎn),先求出矩形是正方形
在證明,從而得出,即可解答
(1)證明:①,,
四邊形 是平行四邊形,
,
平行四邊形是矩形.
,
矩形是正方形.
②由①得,.
由旋轉(zhuǎn)得,
,,
,.
,
,
.
,
,
.
,
,
,
,
,
是的中點(diǎn).
(2)點(diǎn) 仍然是的中點(diǎn).
證明如下:延長,交于點(diǎn),延長交 于點(diǎn).
,,
,,.
由旋轉(zhuǎn)得,
,,
,
四邊形是矩形.
,
矩形是正方形,
,,
.
,
,
,
,
,
,
即,
,
,
,
是中點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點(diǎn),且與反比例函數(shù)y=交于點(diǎn)C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點(diǎn)B為OF的中點(diǎn),四邊形OECF的面積為16,點(diǎn)D的坐標(biāo)為(4,﹣b).
(1)求一次函數(shù)表達(dá)式和反比例函數(shù)表達(dá)式;
(2)求出點(diǎn)C坐標(biāo),并根據(jù)圖象直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居衡陽,我市準(zhǔn)備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)求y與x的函數(shù)關(guān)系式;
(2)廣場上甲、乙兩種花卉的種植面積共1000m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的3倍,那么應(yīng)該怎忙分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】父親節(jié)即將到來之際,某商店準(zhǔn)備購進(jìn)、兩種男裝進(jìn)行銷售,其中每套種男裝的進(jìn)價(jià)比每套種男裝的進(jìn)價(jià)多元用元購進(jìn)種男裝的數(shù)量是用元購進(jìn)種男裝數(shù)量的倍.
(1)求每套種男裝和每套種男裝的進(jìn)價(jià)各是多少元:
(2)若該商店本次購進(jìn)種男裝的數(shù)量比購進(jìn)種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價(jià)格為元,每套種男裝的銷售價(jià)格為元,若將本次購進(jìn)的、兩種男裝全部售出后獲得的利潤不少于元,那么該商店至少需要購進(jìn)種男裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想測量河對岸的一幢高樓AB的高度,小明在河邊C處測得樓頂A的仰角是60°距C處60米的E處有幢樓房,小明從該樓房中距地面20米的D處測得樓頂A的仰角是30°(點(diǎn)B.C.E在同一直線上且AB、DE均與地面BE處置),求樓AB的高________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七巧板是我們祖先的一項(xiàng)卓越創(chuàng)造,被西方人譽(yù)為“東方魔板”.下面的兩幅圖正方形(如圖1)、“風(fēng)車型”(如圖2)都是由同一副七巧板拼成的,則圖中正方形ABCD,EFGH的面積比為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點(diǎn)E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4,AE=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批單價(jià)為16元的日用品,銷售一段時間后,為了獲取更多利潤, 商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時,每月能賣360件; 若按每件25元的價(jià)格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價(jià)格x( 元/件)的一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價(jià)格為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com