【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
“圓材埋壁”是我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)在的數(shù)學(xué)語言表達(dá)是:如圖,為的直徑,弦,垂足為,寸,尺,其中1尺寸,求出直徑的長.
解題過程如下:
連接,設(shè)寸,則寸.
∵尺,∴寸.
在中,,即,解得,
∴寸.
任務(wù):
(1)上述解題過程運(yùn)用了 定理和 定理.
(2)若原題改為已知寸,尺,請根據(jù)上述解題思路,求直徑的長.
(3)若繼續(xù)往下鋸,當(dāng)鋸到時(shí),弦所對圓周角的度數(shù)為 .
【答案】(1)垂徑,勾股;(2)26寸;(3)或
【解析】
(1)由解題過程可知根據(jù)垂徑定理求出AE的長,在Rt△OAE中根據(jù)勾股定理求出r的值,即可得到答案.
(2)連接OA,設(shè)OA=r寸,則OE=DE-r=25-r,再根據(jù)垂徑定理求出AE的長,在Rt△OAE中根據(jù)勾股定理求出r的值,進(jìn)而得出結(jié)論.
(3)當(dāng)AE=OE時(shí),△AEO是等腰直角三角形,則∠AOE=45°,∠AOB=90°,所以由圓周角定理推知弦AB所對圓周角的度數(shù)為 45°或135°.
解:(1)根據(jù)題意知,上述解題過程運(yùn)用了 垂徑定理和 勾股定理.
故答案是:垂徑;勾股;
(2)連接OA,設(shè)OA=r寸,則OE=DE-r=(25-r)寸
∵AB⊥CD,AB=1尺,∴AE=AB=5寸
在Rt△OAE中,OA2=AE2+OE2,即r2=52+(25-r)2,解得r=13,
∴CD=2r=26寸
(2)∵AB⊥CD,
∴當(dāng)AE=OE時(shí),△AEO是等腰直角三角形,
∴∠AOE=45°,
∴∠AOB=2∠AOE=90°,
∴弦AB所對圓周角的度數(shù)為∠AOB=45°.
同理,優(yōu)弧AB所對圓周角的度數(shù)為135°.
故答案是:45°或135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度沿B→A→C運(yùn)動(dòng)到點(diǎn)C停止.若△BPQ的面積為y運(yùn)動(dòng)時(shí)間為x(s),則下列圖象中能大致反映y與x之間關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)若x=1是方程的一個(gè)根,求m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場要建一個(gè)飼養(yǎng)場(長方形ABCD),飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個(gè)場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長57米,設(shè)飼養(yǎng)場(長方形ABCD)的寬為a米.
(1)飼養(yǎng)場的長為多少米(用含a的代數(shù)式表示).
(2)若飼養(yǎng)場的面積為288m2,求a的值.
(3)當(dāng)a為何值時(shí),飼養(yǎng)場的面積最大,此時(shí)飼養(yǎng)場達(dá)到的最大面積為多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.
旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度;
如果,,求:四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,,,點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動(dòng),、兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也停止運(yùn)動(dòng).若,當(dāng)__時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線的部分圖象,其頂點(diǎn)坐標(biāo)是,給出下列結(jié)論:①;②;③;④;⑤.其中正確結(jié)論的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)D是△ABC中AC的中點(diǎn),AE∥BC,ED交AB于點(diǎn)G,交BC的延長線于點(diǎn)F.
(1)求證:△GAE∽△GBF;
(2)求證:AE=CF;
(3)若BG:GA=3:1,BC=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的平分線交于點(diǎn),點(diǎn)在上,以點(diǎn)為圓心,為半徑的圓恰好經(jīng)過點(diǎn),分別交,于點(diǎn),
(1)試判斷直線與的位置關(guān)系,并說明理由.
(2)若,,求陰影部分的面積(結(jié)果保留)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com