【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫(huà)有四個(gè)不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹(shù)狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

(2)求摸出兩張紙牌牌面上所畫(huà)幾何圖形,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

【答案】(1)詳見(jiàn)解析;(2)

【解析】

試題分析:(1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果;(2)由既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有4種情況,直接利用概率公式求解即可求得答案.

試題解析:解(1)畫(huà)樹(shù)狀圖得:

則共有16種等可能的結(jié)果;

(2)既是中心對(duì)稱又是軸對(duì)稱圖形的只有B、C,

既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有4種情況,

既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

15x+62x3

22x3x1)=7

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩家汽車銷售公司根據(jù)近幾年的銷售量分別制作了如圖所示的統(tǒng)計(jì)圖,從20142018年,這兩家公司中銷售量增長(zhǎng)較快的是_____公司(”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若,則的值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,點(diǎn)是直線上一點(diǎn),,射線平分.

1 2

1)求的度數(shù);

2)將圖1按順時(shí)針?lè)较蜣D(zhuǎn)至圖2所示的位置,仍然平分,,則___________.(用含有的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF90°,且EF交正方形ABCD的外角∠DCG的平分線CF于點(diǎn)F

1)如圖2,取AB的中點(diǎn)H,連接HE,求證:AEEF

2)如圖3,若點(diǎn)EBC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變結(jié)論“AEEF”仍然成立嗎?如果正確,寫(xiě)出證明過(guò)程:如果不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DECA,DFBA.

下列四種說(shuō)法:①四邊形AEDF是平行四邊形;②如果BAC=90°,那么四邊形AEDF是矩形;③如果AD平分BAC,那么四邊形AEDF是菱形;④如果ADBC且AB=AC,那么四邊形AEDF是菱形.

其中,正確的有( ) 個(gè).

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是DCP的平分線上一點(diǎn).若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請(qǐng)你完成余下的證明過(guò)程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點(diǎn),則當(dāng)AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請(qǐng)你作出猜想:當(dāng)AMN= °時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案