在△ABC中,已知∠C=90°,sinA+sinB=,則sinA﹣sinB=  

考點:

互余兩角三角函數(shù)的關系.

分析:

根據(jù)互余兩角的三角函數(shù)關系,將sinA+sinB平方,把sin2A+cos2A=1,sinB=cosA代入求出2sinAcosA的值,代入即可求解.

解答:

解:(sinA+sinB)2=()2

∵sinB=cosA,

∴sin2A+cos2A+2sinAcosA=,

∴2sinAcosA=﹣1=,

則(sinA﹣sinB)2=sin2A+cos2A﹣2sinAcosA=1﹣=,

∴sinA﹣sinB=±.

故答案為:±.

點評:

本題考查了互余兩角的三角函數(shù)關系,屬于基礎題,掌握互余兩角三角函數(shù)的關系是解答本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各個內(nèi)角的度數(shù)是多少?
(2)如圖,將△ABC紙片沿MN折疊所得的粗實線圍成的圖形的面積與原△ABC的面積之比為3:4,且圖中3個陰影三角形的面積之和為12cm2,則重疊部分的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•雅安)在△ABC中,已知∠A、∠B都是銳角,且sinA=
3
2
,tanB=1,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知∠A=80°,則∠B、∠C的角平分線相交所成的鈍角為
130°
130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述結論中,正確的有
①②④⑤
①②④⑤
.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,則∠B的度數(shù)=
20°
20°

查看答案和解析>>

同步練習冊答案