【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,對(duì)稱中心為點(diǎn)P,點(diǎn)F為BC邊上一個(gè)動(dòng)點(diǎn),點(diǎn)E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對(duì)稱,設(shè)它們的面積和為S1

(1)求證:∠APE=∠CFP;
(2)設(shè)四邊形CMPF的面積為S2 , CF=x,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當(dāng)圖中兩塊陰影部分圖形關(guān)于點(diǎn)P成中心對(duì)稱時(shí),求y的值.

【答案】
(1)

證明:∵∠EPF=45°,

∴∠APE+∠FPC=180°﹣45°=135°;

而在△PFC中,由于PC為正方形ABCD的對(duì)角線,則∠PCF=45°,

則∠CFP+∠FPC=180°﹣45°=135°,

∴∠APE=∠CFP


(2)

解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,

∴△APE∽△CFP,則

而在正方形ABCD中,AC為對(duì)角線,則AC= AB=

又∵P為對(duì)稱中心,則AP=CP= ,

∴AE= = =

如圖,過(guò)點(diǎn)P作PH⊥AB于點(diǎn)H,PG⊥BC于點(diǎn)G,

P為AC中點(diǎn),則PH∥BC,且PH= BC=2,同理PG=2.

SAPE= = ×2× = ,

∵陰影部分關(guān)于直線AC軸對(duì)稱,

∴△APE與△APN也關(guān)于直線AC對(duì)稱,

則S四邊形AEPN=2SAPE= ;

而S2=2SPFC=2× =2x,

∴S1=S正方形ABCD﹣S四邊形AEPN﹣S2=16﹣ ﹣2x,

∴y= = = + ﹣1.

∵E在AB上運(yùn)動(dòng),F(xiàn)在BC上運(yùn)動(dòng),且∠EPF=45°,

∴2≤x≤4.

=a,則y=﹣8a2+8a﹣1,當(dāng)a= = ,即x=2時(shí),y取得最大值.

而x=2在x的取值范圍內(nèi),代入x=2,則y最大=4﹣2﹣1=1.

∴y關(guān)于x的函數(shù)解析式為:y= + ﹣1(2≤x≤4),y的最大值為1.

②圖中兩塊陰影部分圖形關(guān)于點(diǎn)P成中心對(duì)稱,

而此兩塊圖形也關(guān)于直線AC成軸對(duì)稱,則陰影部分圖形自身關(guān)于直線BD對(duì)稱,

則EB=BF,即AE=FC,

=x,解得x=

代入x= ,得y= ﹣2.


【解析】(1)利用正方形與三角形的相關(guān)角之間的關(guān)系可以證明結(jié)論;
(2)本問關(guān)鍵是求出y與x之間的函數(shù)解析式.①首先分別用x表示出S1與S2 , 然后計(jì)算出y與x的函數(shù)解析式.這是一個(gè)二次函數(shù),求出其最大值;②注意中心對(duì)稱、軸對(duì)稱的幾何性質(zhì).
【考點(diǎn)精析】本題主要考查了相似三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的校門是伸縮門(如圖1),伸縮門中的每一行菱形有20個(gè),每個(gè)菱形邊長(zhǎng)為30厘米.校門關(guān)閉時(shí),每個(gè)菱形的銳角度數(shù)為60°(如圖2);校門打開時(shí),每個(gè)菱形的銳角度數(shù)從60°縮小為10°(如圖3).問:校門打開了多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為激勵(lì)教師愛崗敬業(yè),某市開展了“我最喜愛的老師”評(píng)選活動(dòng).某中學(xué)確定如下評(píng)選方案:有學(xué)生和教師代表對(duì)4名候選教師進(jìn)行投票,每票選1名候選教師,每位候選教師得到的教師票數(shù)的5倍與學(xué)生票數(shù)的和作為該教師的總票數(shù).以下是根據(jù)學(xué)生和教師代表投票結(jié)果繪制的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖(不完整). 學(xué)生投票結(jié)果統(tǒng)計(jì)表

候選教師

王老師

趙老師

李老師

陳老師

得票數(shù)

200

300


(1)若共有25位教師代表參加投票,則李老師得到的教師票數(shù)是多少?請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.(畫在答案卷相對(duì)應(yīng)的圖上)
(2)王老師與李老師得到的學(xué)生總票數(shù)是500,且王老師得到的學(xué)生票數(shù)是李老師得到的學(xué)生票數(shù)的3倍多20票,求王老師與李老師得到的學(xué)生票數(shù)分別是多少?
(3)在(1)、(2)的條件下,若總得票數(shù)較高的2名教師推選到市參評(píng),你認(rèn)為推選到市里的是兩位老師?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】杭州市某4所高中近兩年的最低錄取分?jǐn)?shù)線如下表(單位:分),設(shè)4所高中2011年和2012年的平均最低錄取分?jǐn)?shù)線分別為 , ,則 =分 杭州市某4所高中最低錄取分?jǐn)?shù)線統(tǒng)計(jì)表

學(xué)校

2011年

2012年

杭州A中

438

442

杭州B中

435

442

杭州C中

435

439

杭州D中

435

439

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】義烏國(guó)際小商品博覽會(huì)某志愿小組有五名翻譯,其中一名只會(huì)翻譯阿拉伯語(yǔ),三名只會(huì)翻譯英語(yǔ),還有一名兩種語(yǔ)言都會(huì)翻譯.若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語(yǔ)言的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACDBCE中,AC=BC,AD=BE,CD=CE,ACE=55°,BCD=155°,ADBE相交于點(diǎn)P,則∠BPD的度數(shù)為(

A. 120° B. 125° C. 130° D. 155°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班去體育用品商店購(gòu)買羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店說(shuō):“羽毛球拍和羽毛球都打9折優(yōu)惠”,乙商店說(shuō):“買一副羽毛球拍贈(zèng)2只羽毛球”.

(1)該班如果買2副羽毛球拍和20只羽毛球,問在甲、乙兩家商店各需花多少錢?

(2)該班如果準(zhǔn)備花90元錢全部用于買2副羽毛球拍和若干只羽毛球,請(qǐng)問到哪家商店購(gòu)買更合算?

(3)該班如果必須買2副羽毛球拍,問當(dāng)買多少只羽毛球時(shí)到兩家商店購(gòu)買同樣合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案