【題目】如圖,⊙M經(jīng)過O點,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長是方程的兩根.
(1)求線段OA、OB的長;
(2)若點C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)OC2=CD·CB時,求點C的坐標(biāo);
(3)若點C在優(yōu)弧OA上,作直線BC交x軸于D,是否存在△COB和△CDO相似,若存在,求出點C的坐標(biāo),若不存在,請說明理由.
【答案】(1)OA=12,OB=5;(2)C點坐標(biāo)為(6,-4);(3)存在. C點坐標(biāo)為(6,9).
【解析】
(1)利用因式分解法解方程即可得到OA=12,OB=5;
(2)連接AB、AC、MC,MC與OA交于F,如圖1,由OC2=CDCB,∠OCD=∠BCO,根據(jù)相似三角形的判定方法即可得到△COD∽△CBO,則∠2=∠1,而根據(jù)圓周角定理有∠1=∠3,所以∠2=∠3,得到弧AC=弧OC,根據(jù)垂徑定理得MC⊥OA,OF=AF=OA=6,然后根據(jù)圓周角定理由∠AOB=90°得AB為⊙M的直徑,則在Rt△AOB中,根據(jù)勾股定理可計算出AB=13,得到MC=,易得MF=OB=,則FC=MC-MF=4,于是得到C點坐標(biāo)為(6,-4);
(3)連接AC,連接CM并延長交OA于F,如圖2,若CA=CO,則∠COA=∠CAO,根據(jù)鄰補(bǔ)角的定義得∠COA+∠COD=180°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠CAO+∠CBO=180°,則∠COD=∠CBO,加上∠OCD=∠DCO,根據(jù)相似的判定方法即可得到△CBO∽△COD;由CA=CO得弧CA=弧CO,根據(jù)垂徑定理得CF⊥AC,由(2)得MF=,CM=,OF=6,則CF=CM+MF=9,于是得到C點坐標(biāo)為(6,9).
(1)∵(x-12)(x-5)=0,
∴x1=12,x2=5,
∴OA=12,OB=5;
(2)連接AB、AC、MC,MC與OA交于F,如圖1,
∵OC2=CDCB,即OC:CD=CB:OC,
而∠OCD=∠BCO,
∴△COD∽△CBO,
∴∠2=∠1,
∵∠1=∠3,
∴∠2=∠3,
∴弧AC=弧OC,
∴MC⊥OA,
∴OF=AF=OA=6,
∵∠AOB=90°,
∴AB為⊙M的直徑,
在Rt△AOB中,OA=12,OB=5,
∴AB=13,
∴MC=,
∵MF為△AOB的中位線,
∴MF=OB=,
∴FC=MC-MF=4,
∴C點坐標(biāo)為(6,-4);
(3)存在.
連接AC,連接CM并長交OA于F,如圖2,
若CA=CO,則∠COA=∠CAO,
∵∠COA+∠COD=180°,∠CAO+∠CBO=180°,
∴∠COD=∠CBD,而∠OCD=∠DOC,
∴△CBO∽△COD,
∵CA=CO,
∴弧CA=弧CO,
∴CF⊥AC,
由(2)得MF=,CM=,OF=6,
∴CF=CM+MF=9,
∴C點坐標(biāo)為(6,9).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為24厘米,∠A=60°,點P從點A出發(fā)沿線路AB→BD作勻速運動,點Q從點D同時出發(fā)沿線路DC→CB→BA作勻速運動.
(1)求BD的長;
(2)已知點P、Q運動的速度分別為4厘米/秒,5厘米/秒,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點,若按角的大小進(jìn)行分類,請你確定△AMN是哪一類三角形,并說明理由;
(3)設(shè)(2)中的點P、Q分別從M、N同時沿原路返回,點P的速度不變,點Q的速度改變?yōu)?/span>a厘米/秒,經(jīng)過3秒后,P、Q分別到達(dá)E、F兩點,若△BEF與(2)中的△AMN相似,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設(shè)CE=a,CF=b.
(1)如圖1,當(dāng)a=4時,求b的值;
(2)當(dāng)a=4時,如圖2,求出b的值;
(3)如圖3,請寫出∠EAF繞點A旋轉(zhuǎn)的過程中a、b滿足的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BO是△ABC的AC邊上的高,其中BO=8,AO=6,CO=4,點M以2個單位長度/秒的速度自C向A在線段CA上作勻速運動,同時點N以5個單位長度/秒的速度自A向B在射線AB上作勻速運動,MN交OB于點P.當(dāng)M運動到點A時,點M、N同時停止運動.設(shè)點M運動時間為t.
(1)線段AN的取值范圍是______.
(2)當(dāng)0<t<2時,
①求證:MN:NP為定值.
②若△BNP與△MNA相似,求CM的長.
(3)當(dāng)2<t<5時,若△BNP是等腰三角形,求CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沙坪壩區(qū)各街道居民積極響應(yīng)“創(chuàng)文明城區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.
(1)求A社區(qū)居民人口至少有多少萬人?
(2)街道工作人員調(diào)查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1.5萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強(qiáng)宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二月在第一個月的基礎(chǔ)上又增長了2m%,兩個月后,街道居民的知曉率達(dá)到92%,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫出△ABC關(guān)于原點成中心對稱的三角形△A′B′C′;
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點B″的坐標(biāo);
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G.
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com