【題目】能夠鋪滿地面的正多邊形組合是(    )

A. 正三角形和正五邊形

B. 正方形和正六邊形

C. 正方形和正八邊形

D. 正六邊形和正八邊形

【答案】C

【解析】

正多邊形的組合能否鋪滿地面,關鍵是看位于同一頂點處的幾個角之和能否為360°.若能,則說明能鋪滿;反之,則說明不能鋪滿.

A、正五邊形和正三邊形內角分別為108°、60°,由于60m+108n=360,得m=6-n,顯然n取任何正整數(shù)時,m不能得正整數(shù),故不能鋪滿,故此選項錯誤;

B、正方形、正六邊形內角分別為90°、120°,不能構成360°的周角,故不能鋪滿,故此選項錯誤;

C、正方形、正八邊形內角分別為90°、135°,一個正方形與兩個正八邊形能鋪滿地面,故此選項正確;

D、正六邊形和正八邊形內角分別為120°、135°,不能構成360°的周角,故不能鋪滿,故此選項錯誤,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,, ,, 垂足為,在平行四邊形的邊上有一點,且.將平行四邊形折疊,使點與點合,折痕所在直線與平行四邊形交于點、

(1)求的長;

(2)請補全圖形并求折痕的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在行駛完某段全程600千米的高速公路時,李師傅對張師傅說:“你的車速太快了,平均每小時比我多跑20千米,比我少用1.5小時就跑完了全程.”

1)若這段高速公路全程限速120千米/小時,兩人全程均勻速行駛.那么張師傅超速了嗎?請說明理由;

2)張師傅所行駛的車內油箱余油量(升)與行駛時間(時)的函數(shù)關系如圖所示,則行駛完這段高速公路,他至少需要多少升油?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。

根據(jù)以上信息,解答下列問題:
(1)設租車時間為 小時,租用甲公司的車所需費用為 元,租用乙公司的車所需費用為 元,分別求出 , 關于 的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠有甲種原料130kg,乙種原料144kg.現(xiàn)用這兩種原料生產(chǎn)出A,B兩種產(chǎn)品共30件.已知生產(chǎn)每件A產(chǎn)品需甲種原料5kg,乙種原料4kg,且每件A產(chǎn)品可獲利700元;生產(chǎn)每件B產(chǎn)品需甲種原料3kg,乙種原料6kg,且每件B產(chǎn)品可獲利900元.設生產(chǎn)A產(chǎn)品x件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)A,B兩種產(chǎn)品的方案有哪幾種;
(2)設生產(chǎn)這30件產(chǎn)品可獲利y元,寫出y關于x的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關系如圖,請結合圖象,解答下列問題:
(1)a= , b= , m=
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班級45名同學自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經(jīng)費.通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學購買一件文化衫或一本制作精美的相冊作為紀念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費用為W元,求總費用W(元)與購買的文化衫件數(shù)t(件)的函數(shù)關系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應選擇哪種方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形 ABCD 的對角線 AC、BD 交于 O 點,AEBD,∠AED=∠AOD,連接 OE

1)求證:AEOB;

2)求證:四邊形 CDEO 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x、y的二元一次方程組的解都為正數(shù).

1)求a的取值范圍;

2)化簡|a+1|﹣|a﹣1|

3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值.

查看答案和解析>>

同步練習冊答案