【題目】如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠1=2

1)求證:△ABC≌△ADE;

2)找出圖中與∠1、∠2相等的角(直接寫出結(jié)論,不需證明).

【答案】(1)證明見解析;(2)∠MFD和∠NFC,理由見解析.

【解析】

(1)根據(jù)等式性質(zhì)可以得出∠BAC=∠DAE,進而運用SAS判定△ABC≌△ADE; (2)根據(jù)全等三角形的對應角相等,可以發(fā)現(xiàn)∠B=∠D,∠E=∠C,進而得出與∠1、∠2相等的角有∠MFD和∠NFC.

本題解析:

(1)證明:∵∠1=∠2,

∴∠1+∠MAC=∠2+∠NAC,

∴∠BAC=∠DAE,

在△ABC和△ADE中,

,

∴△ABC≌△ADE(SAS);

(2)圖中與∠1、∠2相等的角有∠MFD和∠NFC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)

(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:

(1)∠BOC的度數(shù);
(2)BE+CG的長;
(3)⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某城市的電視塔AB坐落在湖邊,數(shù)學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度為米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y有最大值4,且圖象與x軸兩交點間的距離是8,對稱軸為x=﹣3,此二次函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過點A(3,0),B(2,﹣3),C(0,﹣3)
(1)求拋物線的表達式;
(2)設點D是拋物線上一點,且點D的橫坐標為﹣2,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,EF是對角線BD上的兩點, 如果添加一個條件使ABE≌△CDF,則添加的條件不能是(  )

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為( )

A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

同步練習冊答案