【題目】已知電流在一定時間段內(nèi)正常通過電子元件的概率是0.5,用列表或畫樹狀圖的方法分別求在一定時間段內(nèi),A、B之間和C、D之間電流能夠正常通過的概率.(提示:可用1、0分別表示電子元件的通與不通兩種狀態(tài))
【答案】解:(1)根據(jù)題意畫樹狀圖:
由圖可得,共有4種情況,其中A、B之間的兩個元件都通過電流的有一種,故所求的概率P= ;
⑵根據(jù)題意畫樹狀圖:
由圖可得,總共有4種情況,其中C、D之間兩個元件中至少有一個元件通電的情況有3種,故所求的概率P=
【解析】由題意可知,AB段若有一個元件斷開,那AB段就斷開;而CD段只有一個元件通電,那CD段通電,畫出樹狀圖求解即可.
【考點精析】認(rèn)真審題,首先需要了解列表法與樹狀圖法(當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準(zhǔn)劃分成“不合格”、“合格”、“優(yōu)秀”三個等級.為了了解電腦培訓(xùn)的效果,隨機抽取其中32名學(xué)生兩次考試考分等級制成統(tǒng)計圖(如圖),試回答下列問題:
(1)這32名學(xué)生經(jīng)過培訓(xùn),考分等級“不合格”的百分比由________下降到________;
(2)估計該校640名學(xué)生,培訓(xùn)后考分等級為“合格”與“優(yōu)秀”的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有A, B兩點,分別表示的數(shù)為,,且.點P從A點出發(fā)以每秒13個單位長度的速度沿數(shù)軸向右勻速運動,當(dāng)它到達B點后立即以相同的速度返回往A點運動,并持續(xù)在A,B兩點間往返運動.在點P出發(fā)的同時,點Q從B點出發(fā)以每秒2個單位長度向左勻速運動,當(dāng)點Q達到A點時,點P,Q停止運動.
(1)填空: , ;
(2)求運動了多長時間后,點P,Q第一次相遇,以及相遇點所表示的數(shù);
(3)求當(dāng)點P,Q停止運動時,點P所在的位置表示的數(shù);
(4)在整個運動過程中,點P和點Q一共相遇了幾次.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在AB上,△DAC、△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,則下列結(jié)論:①AE=DB;②CM=CN;③△CMN為等邊三角形;④MN//BC;
正確的有_________(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫推理理由,將過程補充完整:
如圖,已知AD⊥BC于點D,EF⊥BC于點F,AD平分∠BAC.求證:∠E=∠1.
證明:∵AD⊥BC,EF⊥BC(已知),
∴∠ADC=∠EFC=90°(垂直的定義).
∴____________(_____________).
∴∠1=_____(_____________),
∠E=_____(_______________).
又∵AD平分∠BAC(已知),
∴_____=________.
∴∠1=∠E(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數(shù)是( 。
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“和諧分式”.如:==+=1+,==+=2+,則和都是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是______(填序號);
①;②;③;④
(2)將“和諧分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為:=______+______;
(3)應(yīng)用:先化簡-÷,并求x取什么整數(shù)時,該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陰影部分是邊長為a的大正方形中剪去一個邊長為b的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗證平方差公式的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點A、B、C的坐標(biāo)分別為(0,3)、(﹣2,1)、(﹣1,1),如果將三角形ABC先向右平移2個單位長度,再向下平移2個單位長度,會得到三角形A′B′C′,點A'、B′、C′分別為點A、B、C移動后的對應(yīng)點.
(1)請直接寫出點A′、B'、C′的坐標(biāo);
(2)請在圖中畫出三角形A′B′C′,并直接寫出三角形A′B′C′的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com