如圖,已知反比例函數(shù)與一次函數(shù)y2=x+b的圖象在第一象限相交于點(diǎn)A(1,-k+4).
(Ⅰ)試確定這兩個函數(shù)的解析式;
(Ⅱ)求這兩個函數(shù)圖象的另一個交點(diǎn)B的坐標(biāo).
(Ⅲ)根據(jù)圖象說出,當(dāng)y1>y2時,x的取值范圍.

【答案】分析:(1)將點(diǎn)A的坐標(biāo)(1,-k+4)代入反比例函數(shù)的解析式y(tǒng)1=,即可求出k=2,得到反比例函數(shù)的解析式;再將點(diǎn)A的坐標(biāo)(1,2)代入一次函數(shù)的解析式y(tǒng)2=x+b,即可求出函數(shù)的解析式;
(2)求兩個函數(shù)的交點(diǎn)就是解兩個函數(shù)解析式組成的方程組;
(3)求出反比例函數(shù)在一次函數(shù)圖象的上方時,x的取值范圍即可.
解答:解:(1)∵反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,-k+4),
∴-k+4=
∴k=2,
∴反比例函數(shù)的解析式為y1=;
將點(diǎn)A的坐標(biāo)(1,2)代入一次函數(shù)的解析式y(tǒng)2=x+b,
得2=1+b,
∴b=1,
∴一次函數(shù)的解析式為y2=x+1;

(2)由方程組
解得,
∴這兩個函數(shù)圖象的另一個交點(diǎn)B的坐標(biāo)為(-2,-1);

(3)當(dāng)y1>y2時,由圖象可知,0<x<1或x<-2.
點(diǎn)評:本題主要考查了反比例函數(shù)和一次函數(shù)的交點(diǎn)問題以及待定系數(shù)法求函數(shù)解析式,函數(shù)圖象上的點(diǎn)與解析式的關(guān)系,圖象上的點(diǎn)一定滿足函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個函數(shù)的解析式;
(2)求△MON的面積;
(3)請判斷點(diǎn)P(4,1)是否在這個反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長;
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請求P點(diǎn)坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案