【題目】騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場,順風(fēng)車行經(jīng)營的型車去年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的型車數(shù)量相同,則今年6月份型車銷售總額將比去年6月份銷售總額增加

,兩種型號車的進(jìn)貨和銷售價格表:

型車

型車

進(jìn)貨價格(元輛)

1100

1400

銷售價格(元輛)

今年的銷售價格

2400

1)求今年6月份型車每輛銷售價多少元;

2)該車行計劃7月份新進(jìn)一批型車和型車共50輛,且型車的進(jìn)貨數(shù)量不超過型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

【答案】12000元;(2型車17輛,型車33

【解析】

1)設(shè)去年6月份型車每輛銷售價元,那么今年6月份型車每輛銷售元,根據(jù)銷售總額和每輛銷售價列出方程,即可解決問題.

2)設(shè)今年7月份進(jìn)型車輛,則型車輛,獲得的總利潤為元,先求出的范圍,構(gòu)建一次函數(shù),利用函數(shù)性質(zhì)解決問題.

解:(1)設(shè)去年6月份型車每輛銷售價元,那么今年6月份型車每輛銷售元,

根據(jù)題意得

解得:,

經(jīng)檢驗,是方程的解.

時,

答:今年6月份型車每輛銷售價2000元.

2)設(shè)今年7月份進(jìn)型車輛,則型車輛,獲得的總利潤為元,

根據(jù)題意得

解得:,

的增大而減小,

當(dāng)時,可以獲得最大利潤.

答:進(jìn)貨方案是型車17輛,型車33輛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點PQ運動的時間為t秒.

(1)A、B兩點的坐標(biāo)。

(2)求當(dāng)t為何值時,△APQ△AOB相似,并直接寫出此時點Q的坐標(biāo).

(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以AP、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字 ,, 的卡片,這些卡片除數(shù)字外都相同.甲同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.下圖是他所畫的樹狀圖的一部分.

(1)由上圖分析,甲同學(xué)的游戲規(guī)則是:從袋子中隨機抽出一張卡片后 (填"放回"或"不放回"),再隨機抽出一張卡片;

(2)幫甲同學(xué)完成樹狀圖;

(3)求甲同學(xué)兩次抽到的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,并且滿足.一動點從點出發(fā),在線段上以每秒個單位長度的速度向點移動;動點從點出發(fā)在線段上以每秒個單位長度的速度向點運動,點分別從點同時出發(fā),當(dāng)點運動到點時,點隨之停止運動.設(shè)運動時間為()

(1)兩點的坐標(biāo);

(2)當(dāng)為何值時,四邊形是平行四邊形?并求出此時兩點的坐標(biāo).

(3)當(dāng)為何值時,是以為腰的等腰三角形?并求出此時兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,、分別是菱形ABCD的兩條對角線長和邊長,這時我們把關(guān)于的形如的一元二次方程稱為菱系一元二次方程.請解決下列問題:

1)填空:當(dāng),時,

用含的代數(shù)式表示值,

2)求證:關(guān)于菱系一元二次方程必有實數(shù)根;

3)若菱系一元二次方程的一個根,且菱形的面積是25,BE是菱形ABCDAD邊上的高,求BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點的中點,,的延長線與交于點,且.

1)求證相切;

2)若,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x24(k1)x4k20有兩個實數(shù)根x1x2

(1) 求k的取值范圍

(2) 若x1x22|x1x2|=4,求k的值

查看答案和解析>>

同步練習(xí)冊答案