【題目】如圖,在平行四邊形中,,,,是射線上一點(diǎn),連接,沿將折疊,得.
(1)如圖所示,當(dāng)時(shí),_______度;
(2)如圖所示,當(dāng)時(shí),求線段的長(zhǎng)度;
(3)當(dāng)點(diǎn)為中點(diǎn)時(shí),點(diǎn)是邊上不與點(diǎn)、重合的一個(gè)動(dòng)點(diǎn),將沿折疊,得到,連接,求周長(zhǎng)的最小值.
【答案】(1);(2);(3)
【解析】
(1)求出,利用翻折不變性解決問(wèn)題即可.
(2)如圖2中,作BH⊥AD于H.根據(jù)30度角所對(duì)的直角邊等于斜邊的一半及勾股定理求出AH,PH即可解決問(wèn)題.
(3)的周長(zhǎng)=+BF+=AF+BF+=AB+=10+,推出當(dāng)的周長(zhǎng)最小時(shí),的周長(zhǎng)最小,由此即可解決問(wèn)題.
(1)如圖1:
圖1
∵
∴
由折疊的性質(zhì)可知:
故答案為:
(2)如圖2:作BH⊥AD于H
在Rt△ABH中
∵∠AHB=,AB=10,
∴∠ABH=
∴AH=AB=5
BH=
∵四邊形ABCD是平行四邊形
∴AD∥BC
∵
∴
∴
∴
∴
∴
故答案為:
(3)如圖3中,作BH⊥AD于H ,連接BP
∵PA=8,AH=5
∴PH=3
∵BH=
∴PB=
由翻折可知:PA==8,FA=,
的周長(zhǎng)
+BF+=AF+BF+=AB+=10+
∴當(dāng)最小時(shí), 的周長(zhǎng)最小
∵
∴
∴的最小值為
∴的周長(zhǎng)的最小值為:
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題;△ABC中,有兩個(gè)內(nèi)角相等.
①若∠A=110°,求∠B的度數(shù);
②若∠A=40°,求∠B的度數(shù).
小明通過(guò)探究發(fā)現(xiàn),∠A的度數(shù)不同,∠B的度數(shù)的個(gè)數(shù)也可能不同,因此為同學(xué)們提供了如下解題的想法:
對(duì)于問(wèn)題①,根據(jù)三角形內(nèi)角和定理,∵∠A=110°>90°,∠B=∠C=35°;
對(duì)于問(wèn)題②,根據(jù)三角形內(nèi)角和定理,∵∠A=40°<90°,∴∠A=∠B或∠A=∠C或∠B=∠C,∴∠B的度數(shù)可求.請(qǐng)回答:
(1)問(wèn)題②中∠B的度數(shù)為 ;
(2)參考小明解決問(wèn)題的思路,解決下面問(wèn)題:
△ABC中,有兩個(gè)內(nèi)角相等.設(shè)∠A=x°,當(dāng)∠B有三個(gè)不同的度數(shù)時(shí),求∠B的度數(shù)(用含x的代式表示)以及x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A、B,C三點(diǎn)的坐標(biāo)分別為(0,1)、(3,3)、(4,0).
(I)S△AOC= ;
(2)若點(diǎn)P(m﹣1,1)是第二象限內(nèi)一點(diǎn),且△AOP的面積不大于△ABC的面積,求m的取值范圍;
(3)若將線段AB向左平移1個(gè)單位長(zhǎng)度,點(diǎn)D為x軸上一點(diǎn),點(diǎn)E(4,n)為第一象限內(nèi)一動(dòng)點(diǎn),連BE、CE、AC,若△ABD的面積等于由AB、BE、CE、AC四條線段圍成圖形的面積,則點(diǎn)D的坐標(biāo)為 .(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市“精準(zhǔn)扶貧”工作中,甲、乙兩個(gè)工程隊(duì)先后接力為扶貧村莊修建一條210米長(zhǎng)的公路,甲隊(duì)每天修建15米,乙隊(duì)每天修建25米,一共用10天完成.
根據(jù)題意,小紅和小芳同學(xué)分別列出了下面尚不完整的方程組:
小紅:小芳:
(1)請(qǐng)你分別寫(xiě)出小紅和小芳所列方程組中未知數(shù)x,y表示的意義:
小紅:x表示______,y表示______;
小芳:x表示______,y表示______;
(2)在題中“( 。眱(nèi)把小紅和小芳所列方程組補(bǔ)充完整;
(3)甲工程隊(duì)一共修建了______天,乙工程隊(duì)一共修建了______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)直角三角形紙板ABC放置在銳角△PMN上,使該直角三角形紙板的兩條直角邊AB,AC分別經(jīng)過(guò)點(diǎn)M,N.
(發(fā)現(xiàn))
(1)如圖1,若點(diǎn)A在△PMN內(nèi),當(dāng)∠P=30°時(shí),則∠PMN+∠PNM=______°,∠AMN+∠ANM=______°,∠PMA+∠PNA=______°.
(2)如圖2,若點(diǎn)A在△PMN內(nèi),當(dāng)∠P=50°時(shí),∠PMA+∠PNA=______°.
(探究)
(3)若點(diǎn)A在△PMN內(nèi),請(qǐng)你判斷∠PMA,∠PNA和∠P之間滿足怎樣的數(shù)量關(guān)系,并寫(xiě)出理由.
(應(yīng)用)
(4)如圖3,點(diǎn)A在△PMN內(nèi),過(guò)點(diǎn)P作直線EF∥AB,若∠PNA=16°,則∠NPE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一件工藝品的進(jìn)價(jià)為100元,標(biāo)價(jià)135元出售,每天可售出100件,根據(jù)銷售統(tǒng)計(jì),一件工藝品每降價(jià)1元,則每天可多售出4件,要使每天獲得的利潤(rùn)最大,則每件需降價(jià)( )
A.3.6 元
B.5 元
C.10 元
D.12 元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請(qǐng)我仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=________, b=___________.
(2)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com