【題目】在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.過(guò)C點(diǎn)作CG∥AD,交BA的延長(zhǎng)線于G,過(guò)A作BC的平行線交CG于H點(diǎn).
(1)若∠BAC=900,求證:四邊形ADCH是菱形;
(2)求證:△ABC∽△FCD;
(3)若DE=3,BC=8,求△FCD的面積.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】試題分析:(1)首先判定四邊形ADCH是平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一邊判定AD=CD,則易推知結(jié)論
(2)由AD=AC,可推出∠ADC=∠ACD;因?yàn)?/span>ED垂直平分BC,所以BE=CE,進(jìn)而可得∠ECB=∠B,所以△ABC∽△FCD;
(3)首先過(guò)A作AG⊥CD,垂足為G,易得△BDE∽△BGA,可求得AG的長(zhǎng),繼而求得△ABC的面積,然后由相似三角形面積比等于相似比的平方,求得△FCD的面積.
(1)證明:∵CG∥AD,AH∥CD,
∴四邊形ADCH是平行四邊形。
∵∠BAC=90°,D是BC的中點(diǎn),
∴AD=CD,
∴四邊形ADCH是菱形;
(2)∵AD=AC,
∴∠ADC=∠ACD,
∵D是BC的中點(diǎn),DE⊥BC,
∴BE=CE,
∴∠B=∠FCD,
∴△ABC∽△FCD;
(3)過(guò)A作AM⊥CD,垂足為M.
∵AD=AC,
∴DM=CM,
∴BD:BM=2:3,
∵ED⊥BC,
∴ED∥AM,
∴△BDE∽△BMA,
∴ED:AM=BD:BM=2:3,
∵DE=3,
∴AM=4.9,
∵△ABC∽△FCD,BC=2CD,
∴.
∵S△ABC=×BC×AM=×8×4.5=18,
∴S△FCD=S△ABC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長(zhǎng)為( )
A.6 B.12 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,-m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在學(xué)習(xí)了全等三角形和等邊三角形的知識(shí)后,張老師出了如下一道題:如圖,點(diǎn)B是線段AC上任意一點(diǎn),分別以AB、BC為邊在AC同一側(cè)作等邊△ABD和等邊△BCE,連接CD、AE分別與BE和DB交于點(diǎn)N、M,連接MN.
(1)求證:△ABE≌△DBC.
接著張老師又讓學(xué)生分小組進(jìn)行探究:你還能得出什么結(jié)論?
精英小組探究的結(jié)論是:AM=DN.
奮斗小組探究的結(jié)論是:△EMB≌△CNB.
創(chuàng)新小組探究的結(jié)論是:MN∥AC.
(2)你認(rèn)為哪一小組探究的結(jié)論是正確的?
(3)選擇其中你認(rèn)為正確的一種情形加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:無(wú)論取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于的二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求m的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(a2b)3的結(jié)果是( )
A. a6b B. a6b3 C. a5b3 D. a2b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國(guó)畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表
根據(jù)以上信息完成下列問(wèn)題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛(ài)圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D.依此類推,則旋轉(zhuǎn)第2015次后,得到的等腰直角三角形的直角頂點(diǎn)P2016的坐標(biāo)為 ( )
A. (4033,-1) B. (4031,-1) C. (4033,1) D. (4031,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com