(2008•畢節(jié)地區(qū))數(shù)學(xué)課上,同學(xué)們探究下列命題的準(zhǔn)確性:
(1)頂角為36°的等腰三角形具有一種特性,即經(jīng)過它的某一頂點(diǎn)的一條射線可把它分成兩個(gè)小等腰三角形.為此,請(qǐng)你解答:如圖,已知在△ABC中,AB=AC,∠A=36°,射線BD平分∠ABC交AC于點(diǎn)D.
求證:△DAB與△BCD都是等腰三角形;
(2)在證明了該命題后,有同學(xué)發(fā)現(xiàn):下面兩個(gè)等腰三角形也具有這種特性.請(qǐng)你在下列兩個(gè)三角形中分別畫出一條射線,把它們分別分成兩個(gè)小等腰三角形,并在圖中標(biāo)出所畫小等腰三角形兩個(gè)底角的度數(shù);
(3)接著,同學(xué)們又發(fā)現(xiàn):還有一些既不是等腰三角形也不是直角三角形的三角形也具有這種特性,請(qǐng)你畫出兩個(gè)具有這種特性的三角形示意圖(要求兩三角形不相似,而且既不是等腰三角形也不是直角三角形,并標(biāo)出每一個(gè)小等腰三角形各內(nèi)角的度數(shù)).

【答案】分析:(1)可以先計(jì)算出∠ABC和∠C的度數(shù)為(180°-36°)÷2=72°,再求出∠DBA和∠DBC的度數(shù)72°÷2=36°;
(2)圖1根據(jù)頂角的度數(shù)180°-2×45°=90°,分解成兩個(gè)角都是45°,圖2中一個(gè)與底角36°相等、另一個(gè)180°-36°×3=72°再作為底角;
(3)先作一個(gè)等腰三角形,然后在這個(gè)三角形的基礎(chǔ)上作出另一個(gè)等腰三角形.
解答:(1)證明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵射線BD平分∠ABC,
∴∠ABD=∠CBD=36°.
∴∠BDC=72°,
∴AD=BD=BC.
∴△DAB與△BCD都是等腰三角形.(4分)

(2)解:圖1中將頂角90°平分,圖2中將頂角108°分解成36°和72°兩個(gè)角;

(3)解:如圖(符合即可)(5分)

點(diǎn)評(píng):答對(duì)本題,需要對(duì)等腰三角形的性質(zhì)和判定比較熟悉.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年貴州省畢節(jié)地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年貴州省畢節(jié)地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•畢節(jié)地區(qū))把函數(shù)y=x2的圖象向右平移兩個(gè)單位,再向下平移一個(gè)單位得到的函數(shù)關(guān)系式是( )
A.y=(x+2)2-1
B.y=(x-2)2-1
C.y=(x+2)2+1
D.y=(x-2)2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年甘肅省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案