【題目】如圖是某月的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置的9個數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個數(shù)的和為( 。

A. 69 B. 84 C. 189 D. 207

【答案】C

【解析】

由日歷表可知,圈出的9個數(shù)中,最大數(shù)與最小數(shù)的差總為16,故圈出的最小數(shù)為x,則圈出的最大數(shù)為x+16;

接下來根據(jù)圈出的9個數(shù)中最大數(shù)與最小數(shù)的和為42可列方程,求解即可得到圈出最小數(shù);

此時再根據(jù)圈出的9個數(shù)中,每一行相鄰兩數(shù)相差1,每一列相鄰兩數(shù)相差7即可寫出這9個數(shù),至此,本題就不難解答了.

解:設圈出的最小數(shù)為x,則圈出的最大數(shù)為x+16,由題意得,

x+(x+16)=42,

解得x=13.

故圈出的最小的三個數(shù)為13,14,15,

下面一行的數(shù)分別比上面三個數(shù)大7,故為20,21,22,

第三行的數(shù)分別比上一行三個數(shù)大7,故為27,28,29,

所以圈出的這9個數(shù)的和為189.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點D處測得壁畫底端的俯角∠BDF=30°,且點D距離地面的高度DE=2m,求壁畫AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2 (b+1)x+ (b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.
(1)點B的坐標為 , 點C的坐標為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你進一步探索在第一象限內是否存在點Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.
(1)如圖1,若E是BC的中點,∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉得到,利用尺規(guī)作出旋轉中心O(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓周角∠BAC=55°,分別過B,C兩點作⊙O的切線,兩切線相交于點P,則∠BPC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= (k1>0),y= (k2<0).點A在y軸的正半軸上,過點A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

同步練習冊答案